
Taxon: a Language for Formal Reasoning with Digital
Fabrication Machines

Jasper Tran O’Leary
jaspero@cs.washington.edu
University of Washington
Seattle, Washington, USA

Chandrakana Nandi
cnandi@cs.washington.edu
University of Washington
Seattle, Washington, USA

Khang Lee
leekg97@uw.edu

University of Washington
Seattle, Washington, USA

Nadya Peek
nadya@uw.edu

University of Washington
Seattle, Washington, USA

Figure 1: TaxonConcept. The Taxon language can represent a breadth of digital fabricationmachines as programs that compile
to abstracted machine simulations. Shown are Taxon implementations of A. Prusa i3-mk3, B. Ultimaker S5, C. Makerbot
Method, D. Delta WASP 2040 Clay printer, E. hot wire cutter, F. xPrint modular liquid printer, and G. LitePlacer pick and place
machine.

ABSTRACT
Digital fabrication machines for makers have expanded access to
manufacturing processes such as 3D printing, laser cutting, and
milling. While digital models encode the data necessary for a ma-
chine to manufacture an object, understanding the trade-offs and
limitations of the machines themselves is crucial for successful
production. Yet, this knowledge is not codified and must be gained
through experience, which limits both adoption of and creative
exploration with digital fabrication tools. To formally represent

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474779

machines, we present Taxon, a language that encodes a machine’s
high-level characteristics, physical composition, and performable
actions. With this programmatic foundation, makers can develop
rules of thumb that filter for appropriate machines for a given job
and verify that actions are feasible and safe. We integrate the lan-
guage with a browser-based system for simulating and experiment-
ing with machine workflows. The system lets makers engage with
rules of thumb and enrich their understanding of machines. We
evaluate Taxon by representing several machines from both com-
mon practice and digital fabrication research. We find that while
Taxon does not exhaustively describe all machines, it provides a
starting point for makers and HCI researchers to develop tools for
reasoning about and making decisions with machines.

https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3472749.3474779

UIST ’21, October 10–14, 2021, Virtual Event, USA O’Leary et al.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Applied computing→ Computer-aided manufactur-
ing; • Software and its engineering → Domain specific lan-
guages.

KEYWORDS
Digital fabrication, programming languages, user interfaces, proto-
typing

ACM Reference Format:
Jasper Tran O’Leary, Chandrakana Nandi, Khang Lee, and Nadya Peek.
2021. Taxon: a Language for Formal Reasoning with Digital Fabrication
Machines. In The 34th Annual ACM Symposium on User Interface Software
and Technology (UIST ’21), October 10–14, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 19 pages. https://doi.org/10.1145/3472749.3474779

1 INTRODUCTION
Digital fabrication machines, like 3D printers, laser cutters, CNC
mills, drawing machines, and laboratory pipetting machines allow
a broadening base of users to program machines to create and
modify physical objects. An extensive infrastructure of software and
machine tools along with increasing research in human-computer
interaction have unlocked more possibilities for making. Research
in digital fabrication has contributed novel machines (e.g., [21, 41,
58]) and computational pipelines for creating objects with machines
(e.g., [10, 27–29, 59]). Practitioners have also expanded the use of
precision machines to new applications, such as ceramics [13, 46,
48], engineering education [4, 15, 39], and even fabricating personal
protective equipment for hospitals in a crisis [32]. In all of these
contexts, understanding how a machine works, the high-level pros
and cons of a machine, and how to integrate the machine with
digital and physical materials are crucial for selecting and using a
machine safely and appropriately.

While most industrial and academic work focuses on new pos-
sibilities for making through digital fabrication, we still lack of
common infrastructure for formally representing a machine and
its capabilities. Knowing which machine is best-suited to a manu-
facturing task is often learned by trial and error. Many novice and
would-be users of digital fabrication tools encounter a consider-
able learning curve when faced with fundamental questions that
many expert users take for granted, namely: How does the machine
work? Which machine is right for the job? How do we integrate
a machine into a manufacturing process with digital and physical
materials? The open challenge is how to empower a diverse set
of fabrication machine users to achieve their manufacturing goals
amidst a piecemeal ecosystem of fabrication software, hardware,
and domain expertise.

In recent years, desktop-class digital fabrication machines are
gaining in popularity, with feature-heavy variants and sophisticated
manufacturing workflows frequently introduced. Beyond increas-
ing educational resources, we argue that digital fabrication needs a
unifying formal representation of what a machine is.

We argue that a programming language for machines would
most effectively help makers adapt to an increasingly complex
space of manufacturing workflows. Compared to one-off software
tools, programming languages lend themselves to being extended

as programmers develop libraries and share repositories of code. A
common syntax and semantics let makers more readily understand
features and trade-offs between different machines, as well as use
program analysis techniques to enforce best practices. While it
might seem tempting to create a simple how-to guide to selecting
and using machines, one can never fully anticipate how a maker
might want to chose machines based on their own. Instead, we aim
to let makers author their own rules of thumb for selection and
usage that can selectively be applied to machines-as-programs.

As a first step towards a common enabling infrastructure, we
present Taxon, a language for specifying a digital fabrication ma-
chine’s composition, characteristics, and simulated use cases as
programs. Taxon helps users to gather a large repository of ma-
chines in a common format, query and compare different machines,
and script simulated interactions with machines, digital models,
and physical materials. Taxon programs contain three parts: blocks
and metrics, which together form the machine plan, and the work-
flow composed of a sequence of actions. Blocks are abstracted black
boxes of machine parts that provide enough information to reason
about the machine’s kinematic and mechanical properties without
being prohibitively low-level or verbose. Metrics describe innate
characteristics of a machine that determine when it should and
should not be used. Workflows comprise actions that simulate a
machine’s movements and interactions with material. Makers can
also author and enforce rules of thumb, which are user-defined
checks that Taxon enforces about machine selection and use.

We integrate the Taxon language into a web-based user interface
that lets users search for machines based on their needs, learn the
machine’s composition and kinematics, and experiment with using
the machine in simulation before moving on to using a physical
machine. Overall, Taxon is descriptive, i.e., characterizing existing
machines and workflows, rather than prescriptive of a single fabri-
cation pipeline. Through the language and web interface, we allow
development of an interactive and extensible taxonomy of digital
fabrication machines along with a foundation upon which future
applications can reason precisely about a machine.

This paper’s contributions include:
• Adomain-specific language for formally representing dig-
ital fabrication machine plans and workflows

• A user interface that lets users contribute to and browse a
machine database and experiment with workflows

• Several examples of novel fabrication workflows from
research and practice expressed in Taxon

While material choices and digital models are important parts
of workflows, in this paper we focus primarily on representing ma-
chines and rules for their use, which in turn provides a foundation
for future extensions for materials and models.

2 RELATEDWORK
Unlike most prior work, which seeks to explain and solve specific
parts of the digital fabrication pipeline, Taxon aims to formalize pro-
grammatically: machine characteristics and architecture (as metrics
and blocks), manufacturing steps (as actions), and best practices
(as rules of thumb). It offers a structured way to represent previ-
ously explored interactions between machine plans, actions, digital
models, and materials.

https://doi.org/10.1145/3472749.3474779

Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 2: SystemArchitecture. Makers represent a physical machine as a TaxonMachine Plan program. The program contains:
blocks, which provide an abstracted composition of the machine; and metrics, which describe high-level machine character-
istics, such as the volume that its tool can access (work envelope) and material compatibility. Taxon Machine Plans can be
used in workflows containing actions, which simulate motion and fabrication. Rules of thumb are a database of community-
contributed rules that can be used when analyzing machine plans and actions for appropriate machine choice for a manufac-
turing task or safety of actions. Executing an action updates the machine in the simulation, here, actuating the blocks such
that the print head (in red) moves to the directed position.

2.1 Understanding and Building for Challenges
in Fabrication

Prior research in HCI and graphics has proposed new paradigms
for making with digital fabrication tools [24, 36, 68], while a smaller
subset of work has critically investigated challenges that arise dur-
ing the process. For example, Yildirim et al. interviewed profes-
sionals about their needs and challenges using these tools, noting
that “negotiation of [fabrication] trade-offs” was a crucial part of a
maker’s skill set, yet was not facilitated by most tools [71]. Hudson
et al. studied challenges to 3D printing for newcomers, noting that
one way to reduce barriers would be “to ‘weave in’ expert tips,
advice, and explanations throughout the printing workflow” [20].
Torres et al. examined strategies or rituals that makers adopted to
account for the possibilities of failure with fabrication machines
[60]. Some design researchers, such as Andersen et al. [3], Albaugh
et al. [2], and Devendorf et al. [14] have foregrounded the experi-
ence of blending human craft with machine precision, along with
developing mindsets that account for tensions between the two.
From a high level, these studies highlight that the capabilities and
limitations of a given machine must be accounted for at all parts
of the making process. Schoop et al. [53] and Knibbe et al. [25]
built prototypes of makerspace equipment augmented with sen-
sors and projectors to monitor equipment use and provide alerts
and recommendations to the maker. In the same vein, rather than
relying solely on a maker’s expertise at choosing and building ap-
plications with machines, Taxon formalizes these trade-offs and

characteristics explicitly as programs, thus enforcing machine con-
straints throughout the process. Another example is Hofmann et
al.’s PARTS plug-in for the Fusion 360 CAD program, which lets
designers of 3D models embed additional information on design
intent in the 3D model [19]. We build on this concept of encoding
intent and constraints, but apply it to machines and their associated
workflows rather than to digital models.

Currently, most checks about what is “safe” to do with a machine
are implemented using computer-aided manufacturing (CAM) soft-
ware. For example, a slicer is a common CAM software package
that converts a digital 3D model into a tool path for a 3D printer to
follow to print the modeled object, a process is called slicing. During
slicing, the software can enforce conditions like ensuring the tool
path fits within the printer’s work envelope, or the printer does not
print over thin air without having support material laid down first.
However, these checks are baked into CAM software and are not
portable to other contexts; in this case, they are accessible only to
the maker during slicing, not before or after. We note that the popu-
lar open source slicer Cura has detailed internal representations of
machine configurations [62], and the open source machine motion
control firmware Marlin permits some reconfiguration of specific
machine parameters [49]. Again, these representations are accessi-
ble only to each respective software tool and within its respective
part of the fabrication pipeline. We argue that logic around what is
safe to do with a given machine and task should not be sequestered
to CAM software or machine controllers, but rather it should be
available to makers at all steps of the manufacturing process.

UIST ’21, October 10–14, 2021, Virtual Event, USA O’Leary et al.

2.2 Languages for Interactive Exploration
To design Taxon, we drew from prior work in programming lan-
guages research and information visualization research. In par-
ticular, we adopted the strategy used by the Vega and Vega-Lite
grammars, where all information required to generate lower-level
code for a visualization (in D3.js) is represented declaratively in
JSON format [6, 50, 51]. Formalizing visualization properties in
this way enables automated recommendation of visualization chart
types [70] and formalizing design best practices as constraints [35].
Building on interactivity, Hempel, Mayer, Chugh, and colleagues
built a system for authoring Scalable Vector Graphics (SVG) that
synchronized programmatic representations of the SVG with di-
rect manipulation edits performed on the graphic [9, 18, 34]. In
the realm of digital fabrication, Nandi et al. contributed formalized
languages for CAD models and triangle meshes that enabled de-
compilation of mesh models to CAD programs [37] along with a
system for simplifying complex CAD programs into simpler ones
using equality saturation techniques [38].

We also build on prior work that uses programming languages
to teach programming to novices. Namely, Scratch provides a block-
based syntax for teaching programming [44]. Makeblock’s mBlock
language builds on Scratch to help children program small robots
[30]. Andersen et al. contributed an interface for programming
Arduino circuits that translates high-level descriptions to lower-
level circuit firmware and components [3]. Jacobs and Buechley
built a language that enables designers to program fabricatable
garments in the Processing creative coding tool [22]. In contrast,
Taxon’s focus is not necessarily to provide a simpler interface for
using digital fabrication tools; rather, it aims to make machine
trade-offs and safety checks elements of a programming interface.
Currently, Taxon is meant as a tool for makers to investigate prior
to physical fabrication, similar to existing tools like model analyzers
for 3D printing [31]. Our goal is not to replace such tools, but rather
to explicitly represent trade-offs and caveats in a common language.
In addition, some logic from analyzer tools could be ported to Taxon
as rules of thumb.

2.3 Programmatic Representations of
Digital-Physical Systems

We draw inspiration from how hardware description languages for
VLSI design have enabled robust program verification of desired
properties in digital circuits prior to their fabrication [54]. To de-
velop abstractions for representing machines programatically, we
drew on machine design principles as formulated by Slocum [55],
and abstractions about robot composition andmotion from research
[1, 5] and practice, as used in the common robotics middleware
ROS [47]. In particular, we leveraged Mason’s 1981 idea of formally
modeling robotic mechanisms in a programming language, so that
“the formalism serves as a simple interface between the manipulator
and the programmer, isolating the programmer from the fundamen-
tal complexity of low-level manipulator control” [33]. Compared to
the level of granularity common in robotics models, which typically
account for torques, forces, and trajectories, Taxon’s formalisms
are simpler and optimized to have a lower amount of information
required of the programmer. However, our goal is not immediately
to provide highly accurate simulation; rather we aim to encode

Figure 3: Taxon User Interface. The interface runs in a
browser-based environment and contains the following
parts: A) a database of machine plans, B) the selected ma-
chine plan containing metrics and blocks, C) the scene ren-
dered from the current plan, D) rules of thumb—each can be
double-clicked to show its implementation, E) a database of
workflows, F) the current workflow containing actions that
operate on the scene, model and material, executed one line
at a time via G) the execution controls.

when and how to use machines given a fabrication task—a task
that most robotics middleware assumes users have already done
on their own.

We also extend Tran O’Leary and Peek’s initial exploration into
representing a machine as a program [61], by Willsey et al.’s full-
stack abstraction for programming microfluidics [69], and by Desai
et al.’s abstractions for interactive robot design [11, 12]. Similarly, in-
dustrial tools like Vention let consumers purchase custommachines
specified from a library of parts [65]. We diverge from these tech-
niques by not prescribing modular machine components; instead,
we create an abstraction that can capture a breadth of machine
designs. In general, we aim to leverage prior techniques to formal-
ize abstractions as grammars and apply these techniques to the
foundational component of digital fabrication: the machine itself.

3 SYSTEM ARCHITECTURE
The system we propose has the following design goals:

• To represent a breadth of digital fabrication machines in one
standardized format

• To formalize a machine’s high-level characteristics and trade-
offs and when/when not to use it

• To formalize how a machine moves, how it works with mod-
els and materials, and how to incorporate this information
into a desired workflow

To address these goals, we implement1 the Taxon language to
(1) represent high-level features, constraints, and composition of
machines, and (2) help users compare and simulate basic machine
tasks. Figure 6 shows the core components of Taxon’s grammar in
Backus-Naur form — a Taxon program consists of a machine-plan
and a workflow :
1Our source code is available online at https://github.com/machineagency/taxon.

https://github.com/machineagency/taxon

Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA

• Machine Plan: describes the composition of the machine
from a functional level and contains two parts:
– Metrics: a collection of various high-level properties (met-
rics) about a machine, such as whichmaterials themachine
can use and structural considerations of a machine for fab-
ricating certain types of models

– Blocks: a collection of abstracting bounding boxes for
functional parts of a machine—each known as a block—
where each block represents volumetric and kinematic
properties the given region of the machine

• Machine Workflow: composed of actions—statements that
are executed by the Taxon interpreter which is special-
ized [16] for the current machine plan. Actions are valid
Javascript statements and are a strict subset of Javascript.
Actions simulate various tasks with part or all of themachine,
with materials, and with uploaded 2D and 3D models to both
visualize the machine and to check for potential errors us-
ing codified rules of thumb. Rules of thumb are user-selected
static and run-time checks that filter machines (filtering rules
of thumb) and raise warnings for actions that are risky or
incompatible with a given machine (action rules of thumb).

Taxon also consists of a browser-based user interface that sup-
ports browsing and filtering machine plans (Figure 3, left) and sim-
ulating and checking machine actions (Figure 2 and Figure 3, right).
To frame the design of Taxon, we envision and refer to two users
throughout the paper:

• The Programmer/Contributor: a machine manufacturer
or community expert who writes machine plan programs to
describe real-world machines. We envision machine enthu-
siasts, e.g., from online hobbyist communities, contributing
(1) machine plans for machines on which they have exper-
tise, (2) Rules of Thumb that govern proper machine use as
checked by the Taxon interpreter, and (3) extensions to the
Taxon language.

• The Maker: a fabricator with a rough idea of what they
would like to manufacture. These users have some back-
ground in digital fabrication but would like to explore a
breadth of machines and fabrication tasks beyond their cur-
rent familiarity. They are not necessarily a programmer and
are not interested in modifying machine plans. They want
to learn how possible machines and workflows can fabri-
cate their ideas, compare machines based on metrics, and
visualize machine performance and limitations.

These user types are not mutually exclusive; people who con-
tribute to Taxon’s infrastructure may also use it for their own
manufacturing processes, and vice versa. Real-life makers exist on
a spectrum between these archetypes each with varying levels of
expertise and domain knowledge. We use rules of thumb avoid
prescribing universal ways of using machines and also to give more
flexibility to expert users. For now, we adopt the makers’ perspec-
tive as we step through the user interface (shown in Figure 3) to
explain how the each of the languages work to support this user.

To begin, makers browses a database containing a list of machine
plans (Figure 3a). They can filter the list of machines shown by
querying the database using filtering rules of thumb (Figure 3d).
For example, they can check the “machine is an FDM 3d printer”

rule of thumb to view all FDM 3D printers (printers using plastic
filament) or “machine is rigid enough for milling” to showmachines
whose movements on the workplane are driven by mechanisms
rigid enough to withstand high-force applications (such as milling).

Once makers select a machine, the machine plan is loaded into
the plan viewer Figure 3b. The scene compiler then compiles and
renders the plan into an interactive scene in 3D simulation Figure 3c.
The scene is implemented in Javascript so the plan compiler’s output
is a Javascript object containing a complete THREE.js scene and
animation system [8]. Makers can then double-click machine blocks
in text in the plan viewer to highlight the corresponding block in
the simulation, or double-click blocks in the simulation to jump to
the definition in the plan viewer.

Given a selected machine plan and corresponding simulated
scene, makers can now program the machine using actions Fig-
ure 3f. Pre-made action workflows from a community database are
also provided Figure 3e. Actions animate individual blocks from the
selected machine as well as the entire selected machine. They then
select action rules of thumb from the database Figure 3d, where
each rule enforces a constraint on actions in the workflow. For
example, the rule “material must match machine” requires that
any material used in the program be contained in the machine’s
acceptableMaterials metric. Once the machine, model, material,
and rules of thumb are selected, the maker writes or modifies ac-
tions in the editor and steps through the program using execution
controls Figure 3g. If any actions violate rules of thumb, the action
pane explains the error and proposes alternative machine, model,
or material choices.

4 MACHINE PLANS: BLOCKS
The core of Taxon is its representation of machines as a group of
bounding boxes called blocks. (syntax shown in Figure 6). A block
is an abstraction of subassemblies of physical machines. Each block
encodes information about the machine’s physical size, kinematics,
and tool functionality. The goal of the blocks part of a machine plan
is to provide one standard representation for many different types
of digital fabrication machines; this allows us to access a diverse
range of machines in one programmatic representation.

Blocks are JSON objects that are rendered as block-shaped bound-
ing boxes in the scene. Conceptually, a block represents one func-
tional moving unit of a machine. For example, the Prusa i3 3D
printer example shown in Figure 3 is divided into three blocks
each representing one axis of movement, and additional blocks
for its build plate and extruder. The organization of a machine is
hierarchical in that blocks have connections to their children, and
connections are one-directional and parent-child. For example, in
many 3D printers, the filament extruder is attached to a timing belt;
in Taxon parlance, we say that the belt connects to the extruder,
and the extruder is the belt’s child.

4.1 Block Syntax
Figure 5 shows an example of using Taxon’s block feature to specify
parts of a Prusa-i3 3D printer [43]. Blocks both present information
(e.g. the volume of various parts of the machine) and model how
the machine moves in space. We define moving to mean that the
position of a block changes; we define actuating to mean that an

UIST ’21, October 10–14, 2021, Virtual Event, USA O’Leary et al.

Figure 4: Principle of Actuation. In this example, a block (A, bottom) represents a linear actuator (A, top) made up of a driving
motor, a lead screw, and a translating stage. When the driving motor steps, the lead screw turns, moving the stage along its
actuation axis (B, top). When our block abstraction is actuated, it does not itself move, rather it moves all of its descendants (B,
bottom, shown in orange) in the kinematic tree. Each block connection makes up an edge in the kinematic tree. Details such
as the step-displacement ratio of a block are listed in the attributes property.

actuating block does not move, but all of its descendent blocks move
on the actuating block’s actuatingAxes (see Figure 4). Note that
the y-axis is the “up” direction in our convention. All blocks contain
a dimensions field denoting the size of its bounding box, while
a block’s position is coordinates of the box’s centroid. A block’s
position is defined explicitly through the position property or
implicitly, where the block is a child to another block and its position
snaps to its parent.

Each block has a blockType depending on the type of actuation
it supports and the number of motors it contains. The bounding
box of a block is assumed to contain the motors which e.g., step
(turn a fixed angular amount) to drive its actuation. For example,
the most common type of block is a linear block which is driven
by one underlying stepper motor and has exactly one actuation
axis; a linear block provides one degree of freedom of movement.
Examples of linear blocks include each of the actuating blocks in
the Prusa 3D printer machine plan. In contrast, a cross block rep-
resents a more complex assembly with parallel kinematics, where
multiple underlying motors interdependently control multiple axes.
Examples of cross blocks include the block representing the XZ
axes in the Jubilee machine plan, which are driven by CoreXY kine-
matics [64]. Redundant linear blocks are driven by more than one
motor but move in a single degree of freedom; such blocks typically
represent linear synchronous motion, for example, the two vertical
lead screws on the Prusa 3D printer. Not all blocks actuate. An
example of such a non-actuating block is the build plate of a 3D
printer; while the build plate itself moves, it neither actuates nor
provides additional movement to any other blocks. Finally, a tool is
a special class of block whose movement can change the scene—for
example, extruding 3D printer filament, carving material out of
stock, or picking and placing an object. A block is designated as a
tool by setting ‘‘isTool’’: true.

Blocks may also have attributes, which contain block-
specific information. Example attributes include driveType, which

specifies the physical mechanism used to provide motion, e.g. rack
and pinion or timing belt, stepDisplacementRatio, which states
how much linear displacement along the actuation axes results
from one step (the minimum amount of rotation) of the driving
motor, and isPlatform, indicating that the block is a moving plat-
form holds a model or workpiece. This field is useful particularly
for tools because they may have different properties which may be
difficult to generalize over all types of tools.

4.1.1 Declaring Motors Explicitly. In early iterations of Taxon, pro-
grammers also needed to manually declare motors and specify how
motors and blocks paired to provide motion. This let us reason
about inverse kinematics, that is, how motors would need to turn
to implement given machine movements. Each block type had an
underlying kinematics equation that mapped a block’s actuation to
one or more motors. However, in formative studies, programmers
reported that reasoning about motors was confusing and distracted
them from their overall goal of representing functional units of
movement. As a result, we removed the concept of motors as sepa-
rate abstractions from the blocks part of a machine plan. Thus, a
block is understood to actuate on its actuation axes without the
programmer needing to programmatically declare any motors to
drive the block’s actuation. In future work, we anticipate introduc-
ing a lower level of abstraction, where programmers can specify in
more detail how a given block actuates with respect to motors.

4.2 Connections
Once programmers have abstracted parts of the machine as blocks,
they next define how blocks actuate and move other blocks to move
the tool in a controlled manner. They order blocks into a kinematic
tree, where blocks have parent-child connections that make the
entire subtree of a parent block move in space whenever the parent
block actuates. Intuitively, a connection means that the child block
is “placed on” or “attached to” the parent, thus having its position

Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA
Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA

{
"name": "prusa -i3-mk3",
"metrics": { ... },
"blocks :[...]

}

{
"machineClass": "printer3d",
"workEnvelope": {

"shape": "box",
"dimensions" : {

"width": 130,
"height": 110,
"length": 130

},
"position": {

"x": 0,
"y": 102.6,
"z": 0

}
},
"manufacturingStrategies": [

"additive"
],
"materialCompatibility": {

"include": [
"plastic"

],
"exclude": [

"wood", "metal"
]

},
"resolution": 0.001,
"maxTravelSpeed": 200,
"metafeatures": {

"version": 2.0,
"vendorInfo": {

"priceUSD": 749,
"website": "www.prusa3d.com",
"numUsers" : 5000

}
}

}

{
"name": "verticalLeadScrewFrame",
"blockType": "redundantLinear",
"actuationAxes": ["y"],
"dimensions": {

"width": 20,
"height": 150,
"length": 170

},
"position": {

"x": 0,
"y": 87.5,
"z": 0

},
"attributes": {

"driveMechanism": "leadScrew"
},
"connections": [

{
"child": "crossbarAssembly",
"offset": {

"x": 16.25,
"y": 27.5,
"z": 0

}
}

]
}

{
"name": "extruder",
"blockType": "nonActuating",
"isTool": true ,
"dimensions": {

"width": 25,
"height": 25,
"length": 25

},
"attributes": {

"toolType": "print3dFDM",
"nozzleCount": 1

}
}

Figure 5: (Top Left) Top level properties of a machine plan: name, metrics, and blocks. (Top Right) Example of an actuating
block. The block type is redundantLinear, and the actuation axis is the y-axis. Attributes are additional properties specific
to the block. (Bottom Left) Example metric. The work envelope is the volume within which the machine’s tools can move.
Themetric also describes material compatibility, themanufacturing strategy, andmachine features like resolution, and travel
speed. (Bottom Right) Example of a (non-actuating) tool block. Not all of this machine’s blocks are shown. Note that y-axis is
the “up” direction in our convention.

assembly is the child of the vertical lead screw frame, which does
two things. First, the position of the child block “snaps” to the
position of the parent block such that their centroids occupy the
same point, plus the user-defined offset. In this example, the

crossbar assembly is positioned in the lower front of the vertical
leadscrew frame. Second, a connection produces a directed edge in
the machine’s kinematic graph, with the parent and child blocks as
nodes. Actuating any node in a machine’s kinematic graph actuates

Figure 5: (Top Left) Top level properties of a machine plan: name, metrics, and blocks. (Top Right) Example of an actuating
block. The block type is redundantLinear, and the actuation axis is the y-axis. Attributes are additional properties specific
to the block. (Bottom Left) Example metric. The work envelope is the volume within which the machine’s tools can move.
Themetric also describes material compatibility, themanufacturing strategy, andmachine features like resolution, and travel
speed. (Bottom Right) Example of a (non-actuating) tool block. Not all of this machine’s blocks are shown. Note that y-axis is
the “up” direction in our convention.

UIST ’21, October 10–14, 2021, Virtual Event, USA O’Leary et al.UIST ’21, October 10–14, 2021, Virtual Event, USA Tran O’Leary et al.

⟨name⟩ ::= string width ∈ R height ∈ R length ∈ R
⟨position⟩ ::= (R, R, R)

⟨dimensions⟩ ::= width height length

⟨connection⟩ ::= block offset offset ∈ (R,R,R)
⟨actuation-axis⟩ ::= X | Y | Z

⟨attribute⟩ ::= is-tool
| is-platform
| drive-type
| step-displacement-ratio
| nozzle-count | . . .

⟨block-type⟩ ::= non-actuating
| linear
| redundant-linear
| cross
| delta-bot

⟨block⟩ ::= name block-type dimensions [position]
actuation-axis* attribute* connection*

⟨work-envelope⟩ ::= shape dimensions position

⟨metric-value⟩ ::= work-envelope | R | string | object | . . .

⟨metric⟩ ::= name metric-value

⟨shape⟩ ::= box | cylinder | rectangle | . . .

⟨machine-plan⟩ ::= name metric* block*

⟨method⟩ ::= MoveTo (machine-plan, position, R)
| Actuate (block, R) | . . .

⟨constructor⟩ ::= SelectBlock
| SelectMachine
| SelectTool
| SelectMaterial
| SelectModel | . . .

⟨selector⟩ ::= constructor name

⟨action⟩ ::= selector method

⟨workflow⟩ ::= action*

⟨program⟩ ::= machine-plan workflow

Figure 6: Syntax of core components of the Taxon Language.
Reading bottom-up, a Taxon program consists of amachine-
plan and a workflow. A workflow is a list of zero or more
actions. An action consists of a selector and a method to be
called on the component returned by the selector. The selec-
tor returns a component of the machine-plan (which could
be a block or the entire machine plan). Examples of meth-
ods are MoveTowhich moves a component to a position (pos-
sibly extrudingmaterial at a rate indicated by the third argu-
ment) and Actuate which actuates a block by some amount
given as the second argument. A machine plan consists of
metrics and blocks. Metrics are a collection of innate proper-
ties of amachine, and blocks represent volumetric and kine-
matic properties of machine components. Sections 4 and 5
describe these components in detail.

its sub-tree along the same axes. For example, if the vertical lead
screw frame were actuated, the crossbar assembly and any of its
own descendants would move up or down in the parent’s sole
actuation axis. A block may have more than one child.

5 MACHINE PLANS: METRICS
In addition to containing a list of blocks, a machine plan includes
metrics, i.e. high-level characteristics about the machine such as
which materials can a machine use and its resolution. In contrast
to blocks, which describe individual parts of the machine, metrics
describe properties innate to the machine as a whole. In the Taxon
language, metrics are a JSON object where each property is the
name of a metric, and the corresponding value is the value of that
metric, which can be a string, number, boolean, array, or object.
Metrics let users meaningfully compare machines based on their
high-level characteristics, for example, checking which machine
out of several options has the highest rigidity for effectively milling
dense materials. They also provide a way to search for machines
based on their high-level characteristics using filtering rules of
thumb. For example, if users need to 3D print or mill a model with
very fine vertical features, they can search the machine database
for all machines with movement resolution below a certain amount.
In addition to presenting high-level machine characteristics up
front, metrics let programmers specify constraints in action rules
of thumb about advisable actions for a specific machine, given its
metrics. This lets programmers check whether a given machine can
accommodate steps in a manufacturing process as programmed in
actions, and if not, find ways to fix them.

It is the programmers’ responsibility to list the metrics for a
given machine. Generally, machine manufacturers or hobbyist ma-
chine builders include information online about a machine’s work
envelope, resolution, and more specialized details. In this case, pro-
grammers need only copy this information into the machine plan.
In other cases, such as a list of materials compatible with a machine,
programmers might need to gather more information from other
users. A list of possible metrics could be maintained and standard-
ized by Taxon contributors, with new additions being vetted and
added. Metrics are included on a best-effort basis; not every metric
must be defined for every machine. If a rule of thumb needs to
check a metric that is not listed, Taxon alerts users that it cannot
verify the given rule.

As an example, we describe the metrics for the Prusa 3D printer
as shown in the bottom right code listing of Figure 5.

• Machine Class: a broad designation of this machine’s class,
e.g., 3D printer, laser cutter, mill, etc.

• Work Envelope: the bounding box in which the tool can
safely move. The size of the machine’s work envelope limits
the size of the models it can manufacture. Mobile machines
such as the Piccolo plotter [52] could be represented as hav-
ing work envelopes with infinite dimensions on certain axes.

• Manufacturing Strategies: can include additive, subtrac-
tive, drawing, pick and place, etc.

• Material Compatibility: a list of materials that the given
machine is known to be able to work with (e.g., plastic for the
3D printer) and a list of materials that the machine should

Figure 6: Syntax of core components of the Taxon Language.
Reading bottom-up, a Taxon program consists of amachine-
plan and a workflow. A workflow is a list of zero or more
actions. An action consists of a selector and a method to be
called on the component returned by the selector. The selec-
tor returns a component of the machine-plan (which could
be a block or the entire machine plan). Examples of meth-
ods are MoveTowhich moves a component to a position (pos-
sibly extrudingmaterial at a rate indicated by the third argu-
ment) and Actuate which actuates a block by some amount
given as the second argument. A machine plan consists of
metrics and blocks. Metrics are a collection of innate proper-
ties of amachine, and blocks represent volumetric and kine-
matic properties of machine components. Sections 4 and 5
describe these components in detail.

defined in relationship to the parent and moving when the parent
actuates.

For example, in Figure 7, verticalLeadScrewFrame shows a
connection with the crossbarAssembly. In this case, the crossbar
assembly is the child of the vertical lead screw frame, which does
two things. First, the position of the child block “snaps” to the
position of the parent block such that their centroids occupy the
same point, plus the user-defined offset. In this example, the
crossbar assembly is positioned in the lower front of the vertical
leadscrew frame. Second, a connection produces a directed edge in
the machine’s kinematic graph, with the parent and child blocks as
nodes. Actuating any node in a machine’s kinematic graph actuates
its sub-tree along the same axes. For example, if the vertical lead
screw frame were actuated, the crossbar assembly and any of its
own descendants would move up or down in the parent’s sole
actuation axis. A block may have more than one child.

5 MACHINE PLANS: METRICS
In addition to containing a list of blocks, a machine plan includes
metrics, i.e. high-level characteristics about the machine such as
which materials can a machine use and its resolution. In contrast
to blocks, which describe individual parts of the machine, metrics
describe properties innate to the machine as a whole. In the Taxon
language, metrics are a JSON object where each property is the
name of a metric, and the corresponding value is the value of that
metric, which can be a string, number, boolean, array, or object.
Metrics let users meaningfully compare machines based on their
high-level characteristics, for example, checking which machine
out of several options has the highest rigidity for effectively milling
dense materials. They also provide a way to search for machines
based on their high-level characteristics using filtering rules of
thumb. For example, if users need to 3D print or mill a model with
very fine vertical features, they can search the machine database
for all machines with movement resolution below a certain amount.
In addition to presenting high-level machine characteristics up
front, metrics let programmers specify constraints in action rules
of thumb about advisable actions for a specific machine, given its
metrics. This lets programmers check whether a given machine can
accommodate steps in a manufacturing process as programmed in
actions, and if not, find ways to fix them.

It is the programmers’ responsibility to list the metrics for a
given machine. Generally, machine manufacturers or hobbyist ma-
chine builders include information online about a machine’s work
envelope, resolution, and more specialized details. In this case, pro-
grammers need only copy this information into the machine plan.
In other cases, such as a list of materials compatible with a machine,
programmers might need to gather more information from other
users. A list of possible metrics could be maintained and standard-
ized by Taxon contributors, with new additions being vetted and
added. Metrics are included on a best-effort basis; not every metric
must be defined for every machine. If a rule of thumb needs to
check a metric that is not listed, Taxon alerts users that it cannot
verify the given rule.

As an example, we describe the metrics for the Prusa 3D printer
as shown in the bottom right code listing of Figure 5.

Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 7: Building a Kinematic Tree with Connections. This example uses two blocks, the crossbar block (1, Left) and the lead
screw frame block (1, Right) from the Prusa-i3 3D printer example. 1) A connection involves a child (left) and parent block;
2) the child block is translated such that its centroid is at the same point as the parent’s centroid; 3) a user-specified offset
translates the child relative to the parent’s centroid, resulting in the child’s final position. Any descendants of the child block
(gray) receive the same total translation. 4) shows the kinematic tree for the entire 3D printer, with black arrows denoting
connections.

• Machine Class: a broad designation of this machine’s class,
e.g., 3D printer, laser cutter, mill, etc.

• Work Envelope: the bounding box in which the tool can
safely move. The size of the machine’s work envelope limits
the size of the models it can manufacture. Mobile machines
such as the Piccolo plotter [52] could be represented as hav-
ing work envelopes with infinite dimensions on certain axes.

• Manufacturing Strategies: can include additive, subtrac-
tive, drawing, pick and place, etc.

• Material Compatibility: a list of materials that the given
machine is known to be able to work with (e.g., plastic for the
3D printer) and a list of materials that the machine should
explicitly not workwith (e.g., metal for any 3D printer). Mate-
rials not contained in these lists have unknown compatibility
with the current machine, and users must exercise caution if
using them.

• Resolution: the minimum movement in millimeters that
the machine can support. Machines with lower resolutions
cannot support very fine features in models.

• Max Travel Speed: the maximum speed in millimeters per
second that the machine’s tool can move while not extruding
or cutting material

• Metafeatures: a collection of various features that do not
affect the machine’s operation, for example, its cost, website,
and estimated size of its active user base.

6 WORKFLOW AND ACTIONS
We already noted that a machine plan includes both functional
blocks of a machine and the metrics that describe the machine’s
high-level characteristics. In addition to representing the machines,
Taxon helps users make the simulated machine do things by com-
posing workflows. In digital fabrication, a workflow consists of a
series of steps that progress from models, materials, and machine
to finished product. In Taxon, these workflows are implemented
programatically as a sequence of statements called actions, which
let users simulate motion in the scene and load materials and digital
models into the scene. Intuitively, an action is one “step” of the
workflow, which could include anything from testing small per-
turbations to identify how the machine moves to programming a

broad-strokes plan of the entire physical workflow from raw ma-
terial to finished product. By expressing machine movements and
model and material concerns in code, we expose opportunities for
users to learn and error-check in simulation before they work with
dangerous or expensive physical machines and materials.

Actions are a strict subset of Javascript, where programs are
composed of multiple statements (also called actions) that are sepa-
rated by semicolons. The action interpreter executes one statement
at a time as programmers step through the workflow, and each
action modifies the scene’s state, which consists of the machine’s
blocks, their current positions, models and toolpaths uploaded by
users, and any material extruded, placed, or cut. Each statement
contains exactly one selector that is followed by any number of
methods. The selector evaluates to an object that then supports a set
ofmethods depending on the object’s type. Executing amethodmod-
ifies the scene’s state, for example, by turning motors and moving
blocks around, by transforming the model’s geometry, or by cut-
ting or extruding material. For example, $machine() evaluates to a
Machine object that supports methods like .moveTo(coordinates,
extrusion), which actuates all machines blocks so the tool arrives
at the desired (x ,y, z) coordinate, possibly extruding material while
moving; $t(’penAssembly’) evaluates to a Tool object that sup-
ports methods like .raisePen() and .lowerPen(). Before and
during runtime, the machine action interpreter checks statements
against the rules of thumb and highlights any rule violations, for
example, moving a block past an acceptable value.

In addition to controlling the machine, actions let makers load
materials and digital models into the scene. Like blocks, materials
are represented by a bounding box that is placed in the scene,
shown in Figure 8 (right). Each material must have a material class,
which can be additive, i.e., it is deposited in the scene by actions
with additive machines, or subtractive, i.e., makers must place the
material first and then process it using tool actions. Materials also
have names, e.g., “wood” or “plastic,” which are typically listed
in a machine’s materialCompatibility metric. This high-level
description of materials suffices for high-level simulations. Actions
also support uploading digital files (e.g., STL files) and placing them
in the scene. Taxon’s modular design affords easy extensions to
the language for slicing STL files into tool paths and processing
geometry; we leave these for future work.

UIST ’21, October 10–14, 2021, Virtual Event, USA O’Leary et al.
UIST ’21, October 10–14, 2021, Virtual Event, USA Tran O’Leary et al.

/* Actuate the crossbar block back
and forth on its axis. */

$b('crossbarAssembly ').wiggle ();
/* Actuate the lead screw frame 20mm

on its actuating axis. */
$b('verticalLeadScrewFrame ')

.actuate (20)
/* Extrude 10mm of filament. */
$t('extruder ').extrude (10)
/* Establish a coordinate system

with tool's current location
as the origin. */

$machine ().zero();
/* Move the tool to the given

coordinates. */
$machine ().moveTo ({x:50, y:50, z:50});

$machine ().zero();
/* Place the the material that the

user has chosen from a fixed
list of options. */

$material ().placeAt (10, 0, 30);
/* From the user's uploaded model ,

generate toolpaths for the
mill bit to follow. */

$model ().placeAt(0, 0, 0);
$model ().generateToolpath(options);
/* Activate the spindle to spin the

mill bit at 3000 RPM. */
$t('spindle ').setSpeed (3000);
/* Move the spindle along the

toolpath to cut the material. */
$machine ().runToolpath ();

Figure 8: (Left) Workflow testing various movements on the Prusa 3D printer. (Right) Workflow loading sheet material and a
3D model, creating a toolpath from the model, positioning the material and model, and running the mill over the toolpath.

Cartesian coordinate system with the machine’s tool’s current posi-
tion as the origin. For any actions executing coordinate movement,
a coordinate system must be instantiated first by calling .zero().
Finally, given the coordinate system, .moveTo(coords) moves the
machine’s tool to the (𝑥,𝑦, 𝑧) coordinates specified in coords. If a
bounds-checking rule of thumb is enabled, the interpreter throws
an error if the coordinates are outside the machine’s work envelope.

6.2 Checking Machine Actions with Rules of
Thumb

The motivation behind simulating machine actions is twofold: first,
we want users to be able to visualize how a given machine works
and to experiment with it, and second, we want users to be able
to formally state what they want to do with a given machine in
order to enforce best practices. In particular, the act of formally
describing one’s steps and using error checking offers a useful
way to introduce machine knowledge to users. Rather than merely
presenting the user with a list of best practices, users can program
various machine actions and learn about potential issues and errors
in the context of what they are trying to do.

Our solution to these goals are rules of thumb, which analyze
machine plans and actions to offer suggestions and enforce safe ma-
chine usage. Rules of thumb aremodular and stored in a community-
contributed database; users can select which rules they want to
enforce for a given task. To enable these rules of thumb, the user se-
lects which rules they wish to enforce in the Action pane (Figure 3g).
There are two types of rules of thumb:

• Filtering rules of thumb examine only the machine plan,
filtering a list of feasible machines. For example, users plan-
ning to use a 3D printer would likely want to require that
any 3D model they will print to fit within the printer’s work
envelope. Or, someone who is 3D printing a model with
tall and skinny features would want to select a printer de-
sign that is well equipped to print those features without
excessive ringing or vibration.

• Action rules of thumb examine both the machine plan
and actions in the workflow that the interpreter executes.
For example, milling machines should have their end mills
intersect with and carve away stock material only when
the spindle is actively spinning the end mill; otherwise, the
end mill will break. One rule of thumb might be to check
that whenever a move command is executed with a milling
machine, its spindle will be turned on if that move would
intersect with any stock material.

Figure 9 shows the implementations of two rules of thumb in
Javascript, where programmers can access the machine plan as
Javascript objects with the same selector syntax used in action pro-
grams. Because the machine plan is a JSON object, it can be parsed
and traversed in Javascript in the rule of thumb’s implementation.
The first rule, “model must fit in envelope,” is an action rule of
thumb that fires whenever the method Model.placeAt() is called;
here, the rule checks that the model placed in a scene can fit in
the current machine’s work envelope. The second rule of thumb,
“machine handles tall features,” is a filtering rule which removes
from the machine plan list any machines unable to manufacture
tall and skinny features due to their composition.

One limitation with rules of thumb is that best practices can
generally be codified only partially, and sometimes not at all. For
example, users of 3D printer might want to print with ABS fila-
ment, which requires the printer’s extruder to be set to a higher
temperature. If there are no Taxon actions that simulate printer
temperatures, a rule author’s best bet is to detect the use of ABS
filament and issue a warning or a list of written recommendations.
Rules of thumb can also examine the bounding box or metadata of
a digital model for filtering machines that can fabricate models of
the given size, as well as suggest machines based on the model’s
file type—for example, suggesting a laser cutting approach for thin
STL files. Eventually, as programmers extend the Taxon language
by adding more metrics, blocks, and actions, increasing numbers
of best practices can be codified as rules of thumb.

Figure 8: (Left) Workflow testing various movements on the Prusa 3D printer. (Right) Workflow loading sheet material and a
3D model, creating a toolpath from the model, positioning the material and model, and running the mill over the toolpath.

6.1 Machine Action Language Example
To illustrate Taxon, we present the examples in Figure 8 where a
novice user tests various actions using the Prusa 3D printer fea-
tured in previous examples. The selector evaluates to an object of
type Block, Tool, Machine, Model or Material, where each type
supports its own set of methods. For example, the first two lines of
Figure 8 select the blocks from the running 3D printer example (type
Block); then call .wiggle() on the crossbar assembly, causing it to
actuate back and forth, and actuate() on the vertical lead screw
frame, causing it to actuate upwards. The next statement selects
the printer’s extruder (type Tool) and extrudes 10 millimeters of
filament. The following statement has $machine(), which selects
the entire Machine object and calls .zero(), which establishes a
Cartesian coordinate system with the machine’s tool’s current posi-
tion as the origin. For any actions executing coordinate movement,
a coordinate system must be instantiated first by calling .zero().
Finally, given the coordinate system, .moveTo(coords) moves the
machine’s tool to the (x ,y, z) coordinates specified in coords. If a
bounds-checking rule of thumb is enabled, the interpreter throws
an error if the coordinates are outside the machine’s work envelope.

6.2 Checking Machine Actions with Rules of
Thumb

The motivation behind simulating machine actions is twofold: first,
we want users to be able to visualize how a given machine works
and to experiment with it, and second, we want users to be able
to formally state what they want to do with a given machine in
order to enforce best practices. In particular, the act of formally
describing one’s steps and using error checking offers a useful
way to introduce machine knowledge to users. Rather than merely
presenting the user with a list of best practices, users can program
various machine actions and learn about potential issues and errors
in the context of what they are trying to do.

Our solution to these goals are rules of thumb, which analyze
machine plans and actions to offer suggestions and enforce safe ma-
chine usage. Rules of thumb aremodular and stored in a community-
contributed database; users can select which rules they want to
enforce for a given task. To enable these rules of thumb, the user se-
lects which rules they wish to enforce in the Action pane (Figure 3g).
There are two types of rules of thumb:

• Filtering rules of thumb examine only the machine plan,
filtering a list of feasible machines. For example, users plan-
ning to use a 3D printer would likely want to require that
any 3D model they will print to fit within the printer’s work
envelope. Or, someone who is 3D printing a model with
tall and skinny features would want to select a printer de-
sign that is well equipped to print those features without
excessive ringing or vibration.

• Action rules of thumb examine both the machine plan
and actions in the workflow that the interpreter executes.
For example, milling machines should have their end mills
intersect with and carve away stock material only when
the spindle is actively spinning the end mill; otherwise, the
end mill will break. One rule of thumb might be to check
that whenever a move command is executed with a milling
machine, its spindle will be turned on if that move would
intersect with any stock material.

Figure 9 shows the implementations of two rules of thumb in
Javascript, where programmers can access the machine plan as
Javascript objects with the same selector syntax used in action pro-
grams. Because the machine plan is a JSON object, it can be parsed
and traversed in Javascript in the rule of thumb’s implementation.
The first rule, “model must fit in envelope,” is an action rule of
thumb that fires whenever the method Model.placeAt() is called;
here, the rule checks that the model placed in a scene can fit in
the current machine’s work envelope. The second rule of thumb,
“machine handles tall features,” is a filtering rule which removes

Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA
Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA

(action , store) => {
try {

if (action.constructor === '$model ') {
let we = $metrics.workEnvelope;
let modelName = action.query;
let modelDims = modelName.dimensions;
if (we && modelDims.width > we.width

|| modelDims.height > we.height
|| modelDims.length > we.length) {
console.error('The model is too

large for this machine.');
return false;

}
return true;

}
catch (e) {

console.error('Could not verify "model
fits in w.e."');

return true;
}

});

(machine) => {
machine.blocks.forEach ((block) => {

if (block.attributes.isPlatform) {
let pb = block.parentBlock;
if (pb.actuationAxes.includes('x')

|| pb.actuationAxes.includes('z')) {
return false;

}
}

});
return true;

});

Figure 9: Rules of Thumb (Action and Filtering) imple-
mented in Javascript. The first fires when an action attempts
to load a digital model into the scene; if an error is thrown
during checking, e.g. if a metric is undefined, then the im-
plementation reports that it could not complete its check-
ing, but returns true as a default. The second checks that a
machine does not use a platform moving in non-vertical di-
rections; machines meeting this property are better suited
to print tall features.

7 EVALUATION: ADDING TO THE LANGUAGE
THOUGH DEMONSTRATION PROGRAMS

Programmers can most readily contribute to Taxon’s knowledge
base by adding machine plans and rules of thumb. However, they
can also extend the language itself: defining newmetrics, new kinds
of blocks, and new actions as new challenges arise.

7.1 Evaluation Method
The goal of our evaluation is to understand where Taxon can—and
in some cases, cannot yet—gracefully extend to different fabrication

tasks. To evaluate Taxon’s expressivity, we investigate six demon-
stration2 machines that showcase ways of formalizing existing
machines and workflows. We use Taxon to represent the breadth
of machine types and workflows used in both common practice
and digital fabrication research. Table 1 summarizes the different
machines we use for evaluation, which are also shown in Figure 1.
Each demonstration is more than just a proof of concept — for each
machine and new workflow, we highlight challenges and discuss
new rules of thumb and new constructs in the action part of the
language. We then implement these new features and add them
to Taxon’s core. For example, in implementing pick and place ma-
chines, we designate parts of the work envelope as regions, namely,
regions to store parts that the machine will later place, and a region
dedicated as a parking location for tool changes. Further, we add
rules of thumb based on the regions. For example, we add rules of
thumb that enforce that the region where parts are stored cannot
overlap with the PCB material, and regions that hold very small
parts can be entered only when the appropriate tool for handling
small SMD parts is currently in use.

Note that this paper does not assess usability: it focuses instead
on flexible infrastructure and language expressivity that let users
build new interactions on top of a formal foundation. Furthermore,
because the concept of establishing formal checks on fabrication
tasks is relatively novel, and therefore lacks precedent, it is prema-
ture to compare Taxon’s usability to a non-existent baseline [17, 40].
Once the language has developed sufficient new settings, we can
evaluate its ease of use. In the meantime, our primary concern is
evaluating the expressivity of the language.

7.2 Comparing Off-the-Shelf 3D Printers
As an initial task, we implemented the metrics and blocks for 3
different commercial 3D printers: the Prusa i3-mk3—described in
the prior sections—the Makerbot Method, and the Ultimaker S5. In
addition, we implemented the metrics only for 20 different 3D print-
ers; all of these machine plans can be found online in our repository.
These printers vary significantly in price, material compatibility,
and construction, and comparing many printers can quickly be-
come tedious. As metrics for each printer, we added the machines’
work envelope dimensions, material compatibility, resolution, and
other features listed on the printer’s website. When implementing
machine plans for these printers, our choice of blocks varied based
on each printer’s physical construction. For example, the Prusa’s
construction uses a build platform for the in-progress print that
moves side-to-side, whereas the Ultimaker’s platform only moves
vertically. As a result, the in-progress print for the Ultimaker never
moves side-to-side since all such motion is accomplished by the
uppermost assembly which only moves the extruder head. This
construction is useful when printing tall and skinny features (Fig-
ure 9); however, the Prusa is cheaper, and, depending on the user’s
model, such construction might not be necessary. In addition, as
attribute properties for each actuated block, we identify its type of
drive mechanism (e.g., lead screw, timing belt, or a rack and pinion).
This information could be used to implement rules of thumb that

2We use Ledo et al.’s definition of a demonstration as an evaluation [26], which Zhang
et al. exemplify in evaluating their programming language for online community
governance [72].

Figure 9: Rules of Thumb (Action and Filtering) imple-
mented in Javascript. The first fires when an action attempts
to load a digital model into the scene; if an error is thrown
during checking, e.g. if a metric is undefined, then the im-
plementation reports that it could not complete its check-
ing, but returns true as a default. The second checks that a
machine does not use a platform moving in non-vertical di-
rections; machines meeting this property are better suited
to print tall features.

from the machine plan list any machines unable to manufacture
tall and skinny features due to their composition.

One limitation with rules of thumb is that best practices can
generally be codified only partially, and sometimes not at all. For
example, users of 3D printer might want to print with ABS fila-
ment, which requires the printer’s extruder to be set to a higher
temperature. If there are no Taxon actions that simulate printer
temperatures, a rule author’s best bet is to detect the use of ABS
filament and issue a warning or a list of written recommendations.
Rules of thumb can also examine the bounding box or metadata of

a digital model for filtering machines that can fabricate models of
the given size, as well as suggest machines based on the model’s
file type—for example, suggesting a laser cutting approach for thin
STL files. Eventually, as programmers extend the Taxon language
by adding more metrics, blocks, and actions, increasing numbers
of best practices can be codified as rules of thumb.

7 EVALUATION: ADDING TO THE LANGUAGE
THOUGH DEMONSTRATION PROGRAMS

Programmers can most readily contribute to Taxon’s knowledge
base by adding machine plans and rules of thumb. However, they
can also extend the language itself: defining newmetrics, new kinds
of blocks, and new actions as new challenges arise.

7.1 Evaluation Method
The goal of our evaluation is to understand where Taxon can—and
in some cases, cannot yet—gracefully extend to different fabrication
tasks. To evaluate Taxon’s expressivity, we investigate six demon-
stration2 machines that showcase ways of formalizing existing
machines and workflows. We use Taxon to represent the breadth
of machine types and workflows used in both common practice
and digital fabrication research. Table 1 summarizes the different
machines we use for evaluation, which are also shown in Figure 1.
Each demonstration is more than just a proof of concept — for each
machine and new workflow, we highlight challenges and discuss
new rules of thumb and new constructs in the action part of the
language. We then implement these new features and add them
to Taxon’s core. For example, in implementing pick and place ma-
chines, we designate parts of the work envelope as regions, namely,
regions to store parts that the machine will later place, and a region
dedicated as a parking location for tool changes. Further, we add
rules of thumb based on the regions. For example, we add rules of
thumb that enforce that the region where parts are stored cannot
overlap with the PCB material, and regions that hold very small
parts can be entered only when the appropriate tool for handling
small SMD parts is currently in use.

Note that this paper does not assess usability: it focuses instead
on flexible infrastructure and language expressivity that let users
build new interactions on top of a formal foundation. Furthermore,
because the concept of establishing formal checks on fabrication
tasks is relatively novel, and therefore lacks precedent, it is prema-
ture to compare Taxon’s usability to a non-existent baseline [17, 40].
Once the language has developed sufficient new settings, we can
evaluate its ease of use. In the meantime, our primary concern is
evaluating the expressivity of the language.

7.2 Comparing Off-the-Shelf 3D Printers
As an initial task, we implemented the metrics and blocks for 3
different commercial 3D printers: the Prusa i3-mk3—described in
the prior sections—the Makerbot Method, and the Ultimaker S5. In
addition, we implemented the metrics only for 20 different 3D print-
ers; all of these machine plans can be found online in our repository.
These printers vary significantly in price, material compatibility,

2We use Ledo et al.’s definition of a demonstration as an evaluation [26], which Zhang
et al. exemplify in evaluating their programming language for online community
governance [72].

UIST ’21, October 10–14, 2021, Virtual Event, USA O’Leary et al.

Table 1: Demonstration Machines and Workflows. Entries in the rightmost column denote the lines of code in the machine
plan, the workflow, and associated rules of thumb, respectively. *Average lines of code per machine plan.

Taxon Program

Machine Plan Workflow Rules of Thumb Additions To Core Language Lines of Code

Three Off-the-Shelf 3D
Printers

N/A “work envelope larger
than ___”

dependent rules of thumb (132*, 0, 15)

Hot Wire Cutter cuting an airfoil from
styrofoam

“material intersects
voids only”

work envelope orientation,
collision voids

(99, 19, 20)

Wasp Clay 3D Printer
[67]

basic clay print N/A delta bot block, cylindrical work
envelope

(102, 16, 0)

Wang et al. xPrint [66] controlled deposition
of natto cell culture

“dry liquid before next
layer”

active tools (209, 13, 21)

Liteplacer Pick and
Place Machine [23]

placing SMD
components in
footprints on a PCB

“tool matches region” envelope regions, tool changing (259, 12, 24)

and construction, and comparing many printers can quickly be-
come tedious. As metrics for each printer, we added the machines’
work envelope dimensions, material compatibility, resolution, and
other features listed on the printer’s website. When implementing
machine plans for these printers, our choice of blocks varied based
on each printer’s physical construction. For example, the Prusa’s
construction uses a build platform for the in-progress print that
moves side-to-side, whereas the Ultimaker’s platform only moves
vertically. As a result, the in-progress print for the Ultimaker never
moves side-to-side since all such motion is accomplished by the
uppermost assembly which only moves the extruder head. This
construction is useful when printing tall and skinny features (Fig-
ure 9); however, the Prusa is cheaper, and, depending on the user’s
model, such construction might not be necessary. In addition, as
attribute properties for each actuated block, we identify its type of
drive mechanism (e.g., lead screw, timing belt, or a rack and pinion).
This information could be used to implement rules of thumb that
optimize machine choices based on choice of drive train, e.g., filter-
ing for machines with all lead screw actuators due to their ability
to handle high-force applications.

Makers use filtering rules of thumb to compare different ma-
chines. Again, the choice of rules of thumb for filtering rather than
built-in sorting features is because the requirements that makers
would want to filter around change based on the task as well as over
time as machines change. However, in this case, a rule of thumb
may need additional information from users; for example, users
might not have a particular model in mind, yet they still want to see
only 3D printers with work envelopes larger than a certain value.
To support this, we implemented dependent rules of thumb, which
take into account a value from the user when filtering (see Fig-
ure 10). For example, the dependent rule of thumb named ‘‘work
envelope is larger than ___’’ prompts the user to enter a
bounding box with a desired width, height, and length. The rule
then filters for machines that have a work envelope with a box
shape whose dimensions equal or exceed the values listed. The

notion of dependent rules of thumb comes from the concept of
dependent types in programming languages, which are types (e.g.
String or Array) that depend on a value—for example, a type rep-
resenting all arrays of length 3 [7]. In this light, this dependent
rule of thumb implicitly assigns a dependent type to all machines
based on the dimension of their work envelope and filters them
accordingly.

7.3 Cutting a Styrofoam Airfoil with a Hot
Wire Cutter

Hot wire cutters work by heating a suspended wire with an ap-
plied voltage and then moving the wire through a work piece of
styrofoam, which cuts the material by melting it. In this example
we model a typical CNC (Computer Numerical Controlled) hot
wire cutter topology with two degrees of freedom, namely, vertical
and horizontal wire movement (see Figure 11). We observed that
both redundant linear blocks consume significant space for their
bounding boxes that, in reality, are empty space where the tool
(the wire) and the workpiece would go. In the hot wire cutter’s
implementation, blocks in this machine readily intersect with one
another. Assume we want to create rules of thumb that distinguish
between an intersection that is physically harmless versus an inter-
section where machine parts are actually crashing into one another.
A “harmless” intersection in this case is how the foam work piece’s
volume might intersect with the vertical machine block’s empty
space. An unacceptable intersection occurs when the work piece
intersects with the vertical block’s solid parts. To this end, we im-
plemented the notion of a void, an optional property that can be
added to a block’s attributes property. A void is a bounding box
that fits in the block’s bounding box that represents empty space
within the block. As a result, we can be confident that other blocks
intersecting with a block in its void will not cause a collision. We
implemented a rule of thumb to check that a machine does not
collide with itself, referencing blocks and voids. Though this rule
is not strictly necessary for the hot wire cutter, it would likely be

Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA
Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA

(machine , depValue) => {
try {

/* Assume the dependent value
is a string in the form
"[width , height , length]" . */

let dimArray = JSON.parse(depValue);
/* Javascript destructures dimArray

into three variable assignments. */
let [minWidth , minHeight , minLength]

= dimArray;
let we = $metrics.workEnvelope;
return we.width >= minWidth

&& we.height >= minHeight
&& we.length >= minLength;

}
catch (e) {

return false;
}

};

Figure 10: Dependent Filtering Rule of Thumb for Comparing 3D Printers. (Left) Implementation of the rule of thumb that
takes an additional argument from the user interface, depValue, representing the minimum allowable size of the machine’s
work envelope. (Right, Top) The three commercial 3Dprinters in our evaluation rendered in the scenewhich thework envelope
highlighted in blue. (Right, Bottom) The checked rules of thumb filter the machine plan list down to only two satisfactory
machines.

fact, the printer’s machine plan has only three blocks: the delta
bot block, the tool, and an immobile platform. One feature of delta
bot kinematics is a cylindrical work envelope as opposed to a box-
shaped one, which we implemented as well.

In addition to the delta bot block and the cylindrical work en-
velope, we could not feasibly address other important features in
the Wasp printer with the current level of abstraction in Taxon. In
formative interviews with makers, we learned that a key challenge
in 3D printing with clay comes from the material properties of
clay itself. In all such 3D printers, the clay must be packed into a
container tube and forced evenly through the nozzle. The Wasp
printer uses an external compressed air source along with a ro-
tating auger for this. Unlike the plug-and-play nature of plastic
3D printer filament, here the maker must mix their own clay and
find the right consistency: too watery and the extruded material
may collapse, or too thick and the clay will extrude unevenly. One
ceramicist noted that she knew from her own experience with clay
what an ideal consistency felt like, how to vary it based on the type
of print she was attempting, and when and when not to manually
intervene during a print to reshape features by hand. To codify
this sort of tacit knowledge, Taxon would need to support mate-
rials with enough detail to do basic physics simulation, and, even
then, such rules of thumb based on the material properties of clay
would be “ballpark” estimates at best. We decided that this level of
physics-based material representation is beyond the current scope
of Taxon but would be fruitful future work.

Figure 11: Hot Wire Cutter Example. A) The hot wire cutter
rendered in the scene, where the red block is the tool (wire),
the dashed line is the work envelope, and the goldenrod
regions are user-defined voids within the non-tool blocks
(gray). B) A simple workflow consisting of placing a block of
foammaterial, zeroing themachine, andmoving the wire to
cut through the foam with the cut plane illustrated in pink.
C) If the material is placed in such a way where it intersects
the blocks outside the voids, i.e. overlapping with machine
parts, it triggers an error from a rule of thumb that requires
that materials may only intersect blocks in their voids.

7.5 Bio-actuated Textiles
In this demonstration, we replicated a workflow that Wang et al.
demonstrated with xPrint, a machine with modular tooling for
printing with liquid-based smart materials [66]. They created dis-
crete components—such as a liquid dispenser, a mechanical stirrer,
and a ventilator unit—that can be manually attached and removed
as necessary for the desired workflow. In addition, they created
a plug-in for the Grasshopper/Rhinoceros CAD program that lets
makers create custom tool paths for the machine. We focused on
one workflow they presented: depositing liquid natto cell culture

Figure 10: Dependent Filtering Rule of Thumb for Comparing 3D Printers. (Left) Implementation of the rule of thumb that
takes an additional argument from the user interface, depValue, representing the minimum allowable size of the machine’s
work envelope. (Right, Top) The three commercial 3Dprinters in our evaluation rendered in the scenewhich thework envelope
highlighted in blue. (Right, Bottom) The checked rules of thumb filter the machine plan list down to only two satisfactory
machines.

useful for more complex machines and workflows where collisions
are more likely to happen.

7.4 Printing with Clay
We implemented a DeltaWasp 2040 Clay 3D printer and an example
workflow for it that 3D prints a vase out of clay [67]. This printer
uses delta bot kinematics, which feature three levers connected
with revolute joints to a rigid body. The end of each lever that is not
fixed to the rigid body moves independently via a drive mechanism,
and the position of the levers’ ends determines the location of the
rigid body. As a result, the rigid body has three Degrees of Freedom
(DOF) and depends on three or more motors to drive the levers,
which exceeds the linear (1 DOF) and cross (2 DOF) blocks that we
have thus far implemented. Therefore, we implemented a 3DOF
DeltaBotBlock that encompasses the majority of the printer; in
fact, the printer’s machine plan has only three blocks: the delta
bot block, the tool, and an immobile platform. One feature of delta
bot kinematics is a cylindrical work envelope as opposed to a box-
shaped one, which we implemented as well.

In addition to the delta bot block and the cylindrical work en-
velope, we could not feasibly address other important features in
the Wasp printer with the current level of abstraction in Taxon. In
formative interviews with makers, we learned that a key challenge
in 3D printing with clay comes from the material properties of
clay itself. In all such 3D printers, the clay must be packed into a
container tube and forced evenly through the nozzle. The Wasp
printer uses an external compressed air source along with a ro-
tating auger for this. Unlike the plug-and-play nature of plastic

3D printer filament, here the maker must mix their own clay and
find the right consistency: too watery and the extruded material
may collapse, or too thick and the clay will extrude unevenly. One
ceramicist noted that she knew from her own experience with clay
what an ideal consistency felt like, how to vary it based on the type
of print she was attempting, and when and when not to manually
intervene during a print to reshape features by hand. To codify
this sort of tacit knowledge, Taxon would need to support mate-
rials with enough detail to do basic physics simulation, and, even
then, such rules of thumb based on the material properties of clay
would be “ballpark” estimates at best. We decided that this level of
physics-based material representation is beyond the current scope
of Taxon but would be fruitful future work.

7.5 Bio-actuated Textiles
In this demonstration, we replicated a workflow that Wang et al.
demonstrated with xPrint, a machine with modular tooling for
printing with liquid-based smart materials [66]. They created dis-
crete components—such as a liquid dispenser, a mechanical stirrer,
and a ventilator unit—that can be manually attached and removed
as necessary for the desired workflow. In addition, they created
a plug-in for the Grasshopper/Rhinoceros CAD program that lets
makers create custom tool paths for the machine. We focused on
one workflow they presented: depositing liquid natto cell culture
onto textiles, which makes the textiles curl when exposed to mois-
ture (see Figure 12). Depending on the pattern of culture deposited,
makers can control the direction and degree of curl. In Wang et
al.’s paper, this workflow involved attaching a solution container

UIST ’21, October 10–14, 2021, Virtual Event, USA O’Leary et al.

Figure 11: Hot Wire Cutter Example. A) The hot wire cutter
rendered in the scene, where the red block is the tool (wire),
the dashed line is the work envelope, and the goldenrod
regions are user-defined voids within the non-tool blocks
(gray). B) A simple workflow consisting of placing a block of
foammaterial, zeroing themachine, andmoving the wire to
cut through the foam with the cut plane illustrated in pink.
C) If the material is placed in such a way where it intersects
the blocks outside the voids, i.e. overlapping with machine
parts, it triggers an error from a rule of thumb that requires
that materials may only intersect blocks in their voids.

Figure 12: DepositingNattoCell Culturewith xPrint. A) This
xPrint configuration contains a dispenser (red) and an inac-
tive ventilator (dark gray). B) An action activates the venti-
lator (now red), allowing the user to turn its fan on and off.
C) Extruding a thin layer of culture with a moveTo action. D)
Calling fanOn dries the current layer, which triggers the rel-
evant rule of thumb “dry liquid before next layer” to update
its state. E) Depositing the second layer. If thefirst layerwere
not driedwith the fan, the rule of thumbwould have thrown
an error.

equipped with a mechanical stirrer for keeping the natto cells sus-
pended, a dispenser for dispensing the culture, and a combined
ventilation unit in addition to a heated bed to evaporate the current
layer of culture before the next layer is deposited.

Despite the complex nature of tooling in this workflow, we found
that implementing the machine plan and the workflow in Taxon
was less challenging than expected. This is largely because much of
the complexity comes from the choice of tooling to install, rather
than from the process of choosing or controlling themachine.While
multiple tool components can be attached to the machine at any
given time, once attached, no further automated tool changes are
involved. In addition, the machine itself is a fairly straightforward 3-
axis machine, which we implemented using three linear blocks: one
non-actuating block for the build plate, one non-actuating block for
the tool component substrate, and non-actuating tool blocks for the
dispenser, solution container, and ventilator. We implemented rules
of thumb that govern which tools must be equipped to work with
a given material. In our case, if the xPrint machine were selected,
and if natto cell culture were used as a material, then the machine
would need a dispenser, solution container, stirrer, and ventilator.

UIST ’21, October 10–14, 2021, Virtual Event, USA Tran O’Leary et al.

Figure 12: DepositingNattoCell Culturewith xPrint. A) This
xPrint configuration contains a dispenser (red) and an inac-
tive ventilator (dark gray). B) An action activates the venti-
lator (now red), allowing the user to turn its fan on and off.
C) Extruding a thin layer of culture with a moveTo action. D)
Calling fanOn dries the current layer, which triggers the rel-
evant rule of thumb “dry liquid before next layer” to update
its state. E) Depositing the second layer. If thefirst layerwere
not driedwith the fan, the rule of thumbwould have thrown
an error.

onto textiles, which makes the textiles curl when exposed to mois-
ture (see Figure 12). Depending on the pattern of culture deposited,
makers can control the direction and degree of curl. In Wang et
al.’s paper, this workflow involved attaching a solution container
equipped with a mechanical stirrer for keeping the natto cells sus-
pended, a dispenser for dispensing the culture, and a combined
ventilation unit in addition to a heated bed to evaporate the current
layer of culture before the next layer is deposited.

Despite the complex nature of tooling in this workflow, we found
that implementing the machine plan and the workflow in Taxon
was less challenging than expected. This is largely because much of
the complexity comes from the choice of tooling to install, rather
than from the process of choosing or controlling themachine.While
multiple tool components can be attached to the machine at any
given time, once attached, no further automated tool changes are
involved. In addition, the machine itself is a fairly straightforward 3-
axis machine, which we implemented using three linear blocks: one
non-actuating block for the build plate, one non-actuating block for
the tool component substrate, and non-actuating tool blocks for the
dispenser, solution container, and ventilator. We implemented rules
of thumb that govern which tools must be equipped to work with
a given material. In our case, if the xPrint machine were selected,
and if natto cell culture were used as a material, then the machine
would need a dispenser, solution container, stirrer, and ventilator.
To implement the notion of “active,” we added a new property to a
tool block’s attributes property, called active, which can be true
or false. If false, while the tool is included in the machine’s plan, it
is not rendered to the scene and cannot be accessed by the action
interpreter unless marked with the .activate method. We also
implemented a rule of thumb (shown in Figure 13) that requires the
maker to dry the current layer with the fan before moving on to
the next layer.

7.6 Robotic Assembly of PCB Components
We implemented the Liteplacer pick and place machine, an open

source, do-it-yourself machine kit created by Juha Kuusama [23].
This machine picks up SMD components for printed circuit boards

(action , store) => {
try {

/* If we are turning the fan on, then
we can assume that the most
recently deposited layer will have
dried. */

if (action.methodName === 'fanOn ') {
store['highestLayerWet '] = false;

}
if (action.methodName === 'moveTo '

&& action.args [1] !== undefined) {
/* If we are depositing more culture

on top of a layer that has not
been dried , signal an error and
return failure. */

if (store['highestLayerWet ']) {
console.error('Must dry the

previous layer first.');
return false;

}
/* Otherwise , deposit the culture

and mark the current layer
as wet. */

store['highestLayerWet '] = true;
}
return true;

}
catch (e) {

console.log('Cannot enforce "dry
liquid before next layer."');

return true;
}

}

Figure 13: Implementation of the “dry liquid before next
layer”Rule of Thumb. This action rule of thumbaccesses the
store argument which references a state that the program
keeps between different executions of the rule of thumb.
This allows the implementation to keep state for whether
the most recent layer was dried by the fan or not.

and places them precisely within the components’ respective foot-
prints on the PCB board itself. The machine receives as input loca-
tions of the footprints on the PCB and uses a camera-based local-
ization routine to zero itself and calculate trajectories for moving
components from the supply region to the footprints.

This is a relatively complex machine and workflow. For the ma-
chine plan, we implemented the machine to use two linear blocks
for both the lower assembly, which moves along the x axis, and the
crossbar assembly, which moves on the z axis. The tool assembly
was more complicated to model, consisting of a linear block that
moves on the y axis, a rotary block that rotates any PCBs that are
currently picked up, and several suction-cup-tipped needles for ac-
tually picking up the SMD components. We chose not to implement
rotary blocks for now because rotational motion complicates our

Figure 13: Implementation of the “dry liquid before next
layer”Rule of Thumb. This action rule of thumbaccesses the
store argument which references a state that the program
keeps between different executions of the rule of thumb.
This allows the implementation to keep state for whether
the most recent layer was dried by the fan or not.

To implement the notion of “active,” we added a new property to a
tool block’s attributes property, called active, which can be true
or false. If false, while the tool is included in the machine’s plan, it
is not rendered to the scene and cannot be accessed by the action
interpreter unless marked with the .activate method. We also
implemented a rule of thumb (shown in Figure 13) that requires the
maker to dry the current layer with the fan before moving on to
the next layer.

7.6 Robotic Assembly of PCB Components
We implemented the Liteplacer pick and place machine, an open
source, do-it-yourself machine kit created by Juha Kuusama [23].
This machine picks up SMD components for printed circuit boards

Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 14: Verifying Correct Tool Configurations in the Pick and Place Machine. A) A bird’s-eye view of the pick and place
machine’s setup with three differently sized needles for picking up SMD components of respective sizes (0402, 0603, and SOIC-
8) and placing them on a PCB. At the bottom are three regions for parking each needle and at the top are three regions where
each type of component is stored before being picked. B) The needle holder travels to the 0402 parking region and parks
the needle there. C) The needle holder travels to the 0603 parking region and picks up that needle. D) The needle holder
moves to the 0603 storage region successfully because the 0603 needle is currently equipped. If the needle had moved there
before swapping needles, the “tool matches region” rule of thumb would have thrown an error because the needle would be
incorrectly sized for picking up 0603 components.

and places them precisely within the components’ respective
footprints on the PCB board itself. The machine receives as in-
put locations of the footprints on the PCB and uses a camera-based
localization routine to zero itself and calculate trajectories for mov-
ing components from the supply region to the footprints.

This is a relatively complex machine and workflow. For the ma-
chine plan, we implemented the machine to use two linear blocks
for both the lower assembly, which moves along the x axis, and the
crossbar assembly, which moves on the z axis. The tool assembly
was more complicated to model, consisting of a linear block that
moves on the y axis, a rotary block that rotates any PCBs that are
currently picked up, and several suction-cup-tipped needles for ac-
tually picking up the SMD components. We chose not to implement
rotary blocks for now because rotational motion complicates our
model of machine motion; it would require us to solve general-case
inverse kinematics rather than the simpler cases with only linear
motion. Instead, we focused on the machine’s tool changing feature
and on correct tool usage, as shown in Figure 14.

Given our definition of a tool block as the block that interfaces
with material, we designated only the needles as tools; this means
that needle blocks are marked as ‘‘isTool’’: true and support
tool-basedmethods when selected in actions. There are several sizes
of needle for picking up different types of SMD components and
we named each needle after the size of component it can pick up,
i.e., 0402, 0603, and SOIC-8. These needles are parked in a needle
holder in the work envelope, and the machine must perform a
tool changing operation to attach the needle of the correct size
before picking up components of that size. Typically, programmers
must manually program these tool changing routines either in raw

G-Code or in whatever convention the program controlling the pick
and place machine’s control board uses, which is prone to errors.

In this light, a goal of Taxon is to codify best practices—here, en-
suring that the correct needle is attached before attempting to pick
up an SMD component. Enforcing this logic necessitated the cre-
ation of a new feature, envelope regions, which lets the programmer
designate and label subspaces within the work envelope. Similar
to a work envelope itself, an envelope region can be specified as a
box that checks for inclusion within the region based on x, y, and z
coordinates or as a rectangle that checks only two coordinates. We
created a rectangle XZ region where each needle is parked, a region
in which to place stock SMD components corresponding to each
size of needle, and a region in which to place the PCB itself. An
automated tool changing routine would involves traveling to the
region for parking the current tool, having the machine deposit the
current tool, traveling to the region to park the new tool, and then
attaching it to the tool holding assembly. We then implemented
an action rule of thumb (shown in Figure 15) stating that before a
tool can enter a region for stock SMD components, it must have
the correctly sized needle currently attached.

8 LIMITATIONS
While implementing the six demonstration programs for the evalu-
ation, we encountered several limitations. First, simulating a work-
flow often requires us to reason about how a material will react
when acted upon by the machine. For example, in the case of the hot
wire cutter, having the wire pass through a styrofoam workpiece
put foam in the path of the wire. Or, for the clay 3D printer, the con-
sistency of the clay greatly affects its behavior when deposited by

UIST ’21, October 10–14, 2021, Virtual Event, USA O’Leary et al.
UIST ’21, October 10–14, 2021, Virtual Event, USA Tran O’Leary et al.

(action , store) => {
/* Try/catch logic is omitted here. */
if (action.methodName === 'moveTo ') {

let moveArgs = action.args;
let movePt = moveArgs [0];
/* Translate the moveTo method 's

target coordinates into the world
position the tool would occupy
after the action executes. */

let toolPos = $kinematics
.coordsToWorldPosition(movePt);

let equippedTool = $machine
.getEquippedTool ();

/* Iterate through all envelope
regions and check whether the
currently equipped tool matches
the region 's required tool. */

$metrics.envelopeRegions
.forEach ((er) => {
if (er.containsPoint(toolPos)) {

if (equippedTool.attributes
.pcbSize !== er.name) {

console.error(`The ${er.name}
needle must be equipped to
enter the region.`);

return false;
}

}
});

}
return true;

};

Figure 15: Implementation of the “toolmatches region”Rule
of Thumb.

of thumb, such as “avoid collisions by milling material that blocks
access” and “rotate the build plate to minimize milled material”,
we would need to add substantial geometry processing to imple-
ment such collision detection and optimization programatically.
Currently in Taxon, we can reason only about collision with bound-
ing boxes, not with the precise geometry of the work piece. We
defer such features to an extension in future work.

Finally, the codifiable space of possible concerns in digital fab-
rication is vast; Taxon can address only a small subspace of these
concerns in its current form. In this initial implementation, we in-
tended to codify concerns that would present the highest barrier to
novices, namely, the capabilities of each machine from a high level,
a machine’s composition, and its basic action, e.g., “extrude” versus
“cut.” Many lower level concerns, such as software-supported bed
leveling or smoother motor movement through microstepping, are
difficult to represent. However, a key benefit of designing a new
programming language is that we can organize these concerns into
various levels of abstraction. For example, higher levels of abstrac-
tion could abstract away details like extrusion rate, whereas lower

level ones could let programmers add detailed information about
machine parts in the blocks. We envision creating this stack of
abstractions to be a crucial next step for expanding the language
going forward.

9 FUTUREWORK: AFFORDANCES OF
FORMAL REPRESENTATION

Although Taxon currently handles a limited space of concerns, it is
a language that contributors can extend both by authoring rules of
thumb, machine plans, and workflows and also by implementing
features in the language itself. This is a massive step forward from
not having expertise about machines codified at all. A growing
formal representation of digital fabrication machines will enable
an ecosystem of tools that can reason about what machines are,
how they move, how they interact with materials, and what is
considered to be appropriate actions. We aim to add more robust
support for materials and digital models in future iterations. In
addition, because Taxon helps programmers reason about digital
fabrication tool use in software, we envision several newly possible
lines of work.

• Structured Querying for Machines. Similar to how the
Voyager tool enabled structured exploration of visualizations
based on their grammars [70], we could allow for structured
exploration of machine options beyond filtering rules of
thumb given a user-specified workflow. Makers would then
be able to explore trade-offs along speed, precision, cost, and
other factors that are influenced by machine choices for the
workflow.

• Optimizing Instructions for Machine Kinematics. In
many machines, dedicated control software translates in-
structions, e.g., in G-Code, into motor pulses to optimize ma-
chine movement based on its physical characteristics. Given
a Taxon program that lets users infer volumes, masses (in the
future), and kinematics, it would be possible to optimize ma-
chine instructions for any machine rather than hard-coding
these optimizations for one machine. One example optimiza-
tion is input shaping, which involves generating signals that
cancel vibrations associated with moving machine parts and
result in higher quality surface finish [45].

• Online Infrastructure for SharingMachines andWork-
flows. Taxon makes possible a rich online ecosystem of ma-
chine and workflow descriptions. Members of online com-
munities could share their custom machine builds and small
production tasks as Taxon programs. Other members could
run these custom setups in simulation and remix Taxon
programs. Taxon could serve as a quasi API for creating
Instructables-like tutorials with interactive previews built
into each step. In addition, existing open-source specifica-
tions of machines such as Cura’s 3D printer profiles [62]
could be ported to Taxon machine plans.

• Scheduling High-Throughput Production in Existing
Maker Spaces. Maker space managers could create a list
of machine plans that represent the machines they have
available in their maker space. Given a large production task,
such as producing personal protective equipment requiring
multiple machines, programmers could write tools that solve

Figure 15: Implementation of the “toolmatches region”Rule
of Thumb.

the extruder. However, modeling the physical behavior of material—
even in a greatly simplified setting—remains challenging. Because
material properties always affect the semantics of actions, they
must be implemented in the core Taxon language, as opposed to
being added in a modular fashion using rules of thumb. The need to
incorporate more physics into Taxon than we initially anticipated
created a bottleneck that we must address before more workflows
can be fully represented in code.

In addition, nontrivial geometry processing is not yet imple-
mented in Taxon. For the evaluation, we attempted to replicate the
workflow proposed in a paper by Teibrich et al., which features a
machine that can patch existing 3D printed objects by removing
material with a mill and then reprinting new material with an 3D
printer extruder [57]. These subroutines depend on access to the
3D model, the tool path, and robust software for detecting colli-
sions. While it is possible to implement these subroutines as rules
of thumb, such as “avoid collisions by milling material that blocks
access” and “rotate the build plate to minimize milled material”,

we would need to add substantial geometry processing to imple-
ment such collision detection and optimization programatically.
Currently in Taxon, we can reason only about collision with bound-
ing boxes, not with the precise geometry of the work piece. We
defer such features to an extension in future work.

Finally, the codifiable space of possible concerns in digital fab-
rication is vast; Taxon can address only a small subspace of these
concerns in its current form. In this initial implementation, we in-
tended to codify concerns that would present the highest barrier to
novices, namely, the capabilities of each machine from a high level,
a machine’s composition, and its basic action, e.g., “extrude” versus
“cut.” Many lower level concerns, such as software-supported bed
leveling or smoother motor movement through microstepping, are
difficult to represent. However, a key benefit of designing a new
programming language is that we can organize these concerns into
various levels of abstraction. For example, higher levels of abstrac-
tion could abstract away details like extrusion rate, whereas lower
level ones could let programmers add detailed information about
machine parts in the blocks. We envision creating this stack of
abstractions to be a crucial next step for expanding the language
going forward.

9 FUTUREWORK: AFFORDANCES OF
FORMAL REPRESENTATION

Although Taxon currently handles a limited space of concerns, it is
a language that contributors can extend both by authoring rules of
thumb, machine plans, and workflows and also by implementing
features in the language itself. This is a massive step forward from
not having expertise about machines codified at all. A growing
formal representation of digital fabrication machines will enable
an ecosystem of tools that can reason about what machines are,
how they move, how they interact with materials, and what is
considered to be appropriate actions. We aim to add more robust
support for materials and digital models in future iterations. In
addition, because Taxon helps programmers reason about digital
fabrication tool use in software, we envision several newly possible
lines of work.

• Structured Querying for Machines. Similar to how the
Voyager tool enabled structured exploration of visualizations
based on their grammars [70], we could allow for structured
exploration of machine options beyond filtering rules of
thumb given a user-specified workflow. Makers would then
be able to explore trade-offs along speed, precision, cost, and
other factors that are influenced by machine choices for the
workflow.

• Optimizing Instructions for Machine Kinematics. In
many machines, dedicated control software translates in-
structions, e.g., in G-Code, into motor pulses to optimize ma-
chine movement based on its physical characteristics. Given
a Taxon program that lets users infer volumes, masses (in the
future), and kinematics, it would be possible to optimize ma-
chine instructions for any machine rather than hard-coding
these optimizations for one machine. One example optimiza-
tion is input shaping, which involves generating signals that
cancel vibrations associated with moving machine parts and
result in higher quality surface finish [45].

Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA

• Online Infrastructure for Sharing Machines and
Workflows. Taxon makes possible a rich online ecosystem
of machine and workflow descriptions. Members of online
communities could share their custom machine builds and
small production tasks as Taxon programs. Other members
could run these custom setups in simulation and remix Taxon
programs. Taxon could serve as a quasi API for creating
Instructables-like tutorials with interactive previews built
into each step. In addition, existing open-source specifica-
tions of machines such as Cura’s 3D printer profiles [62]
could be ported to Taxon machine plans.

• Scheduling High-Throughput Production in Existing
Maker Spaces. Maker space managers could create a list
of machine plans that represent the machines they have
available in their maker space. Given a large production task,
such as producing personal protective equipment requiring
multiple machines, programmers could write tools that solve
for the optimal allocation of production tasks to machines
in the maker space.

• Program Synthesis for Fabrication. We can view a digi-
tal fabrication pipeline as a compiler that compiles a digital
model into a physical object. In computational fabrication,
inverse design problems solve for digital models given some
physical constraints, e.g. the design of nanophotonic de-
vices given nanoscale fabrication limitations [42]. However,
inverse problems to solve for machines themselves have
not been explored. By providing a formal specification and
programmatic description for machines, Taxon could let re-
searchers use program synthesis techniques [56, 63] to infer
a machine specification that best suits the fabrication of a
digital model under physical constraints.

10 CONCLUSION
We contributed and described the design of Taxon, a grammar for
formally specifying abstract machine properties that enables de-
scription, comparison, and simulation of physical machines. The
promise of digital fabrication lies in how it might allow new practi-
tioners to create objects that uniquely suit their own contexts. The
capabilities and limitations of machines will always be important
factors in both making and research on making, and they ought to
be made explicit. We aim for Taxon to become a useful standard
in fabrication research and practice that lets researchers integrate
machine-level concerns into novel tools and provides makers with
helpful infrastructure to guide their manufacturing processes.

This work was supported by the Alfred P. Sloan Foundation’s
Technology Program. We would like to thank: Gabrielle Benabdal-
lah and Blair Subbaraman for their feedback on early versions of
Taxon; Rastislav Bodik, Sarah Chasins, Eunice Jun, and Zachary Tat-
lock for their numerous insights on programming language design;
and the anonymous reviewers for their helpful and constructive
critique.

REFERENCES
[1] E. Aertbeliën and J. De Schutter. 2014. eTaSL/eTC: A constraint-based task

specification language and robot controller using expression graphs. In 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems. 1540–1546.
https://doi.org/10.1109/IROS.2014.6942760 ISSN: 2153-0866.

[2] Lea Albaugh, Scott E. Hudson, Lining Yao, and Laura Devendorf. 2020. Investi-
gating Underdetermination Through Interactive Computational Handweaving.
In Proceedings of the 2020 ACM Designing Interactive Systems Conference (DIS
’20). Association for Computing Machinery, New York, NY, USA, 1033–1046.
https://doi.org/10.1145/3357236.3395538

[3] Kristina Andersen, Ron Wakkary, Laura Devendorf, and Alex McLean. 2019.
Digital Crafts-Machine-Ship: Creative Collaborations with Machines. Interactions
27, 1 (Dec. 2019), 30–35. https://doi.org/10.1145/3373644 Place: New York,
NY, USA Publisher: Association for Computing Machinery.

[4] Camille Andrews. 2017. Learning and Teaching in Library Makerspaces: A
Literature Review on Making Literacies. In Proceedings of the 2nd International
Symposium on Academic Makerspaces. Cleveland, OH, USA.

[5] Gianni Borghesan, Enea Scioni, Abderrahmane Kheddar, andHerman Bruyninckx.
2016. Introducing Geometric Constraint Expressions Into Robot Constrained
Motion Specification and Control. IEEE Robotics and Automation Letters 1, 2 (July
2016), 1140–1147. https://doi.org/10.1109/LRA.2015.2506119 Publisher:
IEEE.

[6] M. Bostock, V. Ogievetsky, and J. Heer. 2011. D3 Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics 17, 12 (Dec. 2011), 2301–
2309. https://doi.org/10.1109/TVCG.2011.185 Conference Name: IEEE
Transactions on Visualization and Computer Graphics.

[7] Ana Bove and Peter Dybjer. 2009. Dependent Types at Work. In Language Engi-
neering and Rigorous Software Development: International LerNet ALFA Summer
School 2008, Piriapolis, Uruguay, February 24 - March 1, 2008, Revised Tutorial
Lectures, Ana Bove, Luís Soares Barbosa, Alberto Pardo, and Jorge Sousa Pinto
(Eds.). Springer, Berlin, Heidelberg, 57–99. https://doi.org/10.1007/978-
3-642-03153-3_2

[8] Ricardo Cabello. 2014. three.js - Javascript 3D library. https://threejs.org/
[9] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Program-

matic and Direct Manipulation, Together at Last. Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation - PLDI
2016 (2016), 341–354. https://doi.org/10.1145/2908080.2908103 arXiv:
1507.02988.

[10] Ruta Desai, James McCann, and Stelian Coros. 2018. Assembly-aware Design
of Printable Electromechanical Devices. ACM, 457–472. https://doi.org/10.
1145/3242587.3242655

[11] Ruta Desai, Margarita Safonova, Katharina Muelling, and Stelian Coros. 2018.
Automatic Design of Task-specific Robotic Arms. arXiv:1806.07419 [cs] (June
2018). http://arxiv.org/abs/1806.07419 arXiv: 1806.07419.

[12] Ruta Desai, Ye Yuan, and Stelian Coros. 2017. Computational abstractions for
interactive design of robotic devices. In 2017 IEEE International Conference on
Robotics and Automation (ICRA). 1196–1203. https://doi.org/10.1109/ICRA.
2017.7989143

[13] Audrey Desjardins and Timea Tihanyi. 2019. ListeningCups: A Case of Data
Tactility and Data Stories. In Proceedings of the 2019 on Designing Interactive
Systems Conference (DIS ’19). Association for Computing Machinery, New York,
NY, USA, 147–160. https://doi.org/10.1145/3322276.3323694

[14] Laura Devendorf, Abigail De Kosnik, Kate Mattingly, and Kimiko Ryokai. 2016.
Probing the Potential of Post-Anthropocentric 3D Printing. In Proceedings of the
2016 ACM Conference on Designing Interactive Systems (DIS ’16). ACM, New York,
NY, USA, 170–181. https://doi.org/10.1145/2901790.2901879

[15] Daniela Faas, Emily Ferrier, and David Freeman. 2019. Integrative Tool Training
Framework for Fabrication and Library Spaces. In Proceedings of 4th International
Symposium on Academic Makerspaces. New Haven, CT, USA.

[16] Yoshihiko Futamura. 1983. Partial Computation of Programs. 482 (March 1983),
255–295. https://repository.kulib.kyoto-u.ac.jp/dspace/handle/
2433/103401

[17] Saul Greenberg and Bill Buxton. 2008. Usability Evaluation Considered Harmful
(Some of the Time). In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’08). ACM, New York, NY, USA, 111–120. https:
//doi.org/10.1145/1357054.1357074

[18] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (UIST ’19). Association for
Computing Machinery, New Orleans, LA, USA, 281–292. https://doi.org/
10.1145/3332165.3347925

[19] Megan Hofmann, Gabriella Hann, Scott E. Hudson, and Jennifer Mankoff. 2018.
Greater Than the Sum of Its PARTs: Expressing and Reusing Design Intent
in 3D Models. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (CHI ’18). ACM, New York, NY, USA, 301:1–301:12. https:
//doi.org/10.1145/3173574.3173875

[20] Nathaniel Hudson, Celena Alcock, and Parmit K. Chilana. 2016. Understanding
Newcomers to 3D Printing: Motivations, Workflows, and Barriers of Casual
Makers. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA, 384–396. https://doi.org/10.
1145/2858036.2858266

[21] Scott E. Hudson. 2014. Printing Teddy Bears: A Technique for 3D Printing
of Soft Interactive Objects. In Proceedings of the SIGCHI Conference on Human

https://doi.org/10.1109/IROS.2014.6942760
https://doi.org/10.1145/3357236.3395538
https://doi.org/10.1145/3373644
https://doi.org/10.1109/LRA.2015.2506119
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1007/978-3-642-03153-3_2
https://doi.org/10.1007/978-3-642-03153-3_2
https://threejs.org/
https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1145/3242587.3242655
https://doi.org/10.1145/3242587.3242655
http://arxiv.org/abs/1806.07419
https://doi.org/10.1109/ICRA.2017.7989143
https://doi.org/10.1109/ICRA.2017.7989143
https://doi.org/10.1145/3322276.3323694
https://doi.org/10.1145/2901790.2901879
https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/103401
https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/103401
https://doi.org/10.1145/1357054.1357074
https://doi.org/10.1145/1357054.1357074
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3173574.3173875
https://doi.org/10.1145/3173574.3173875
https://doi.org/10.1145/2858036.2858266
https://doi.org/10.1145/2858036.2858266

UIST ’21, October 10–14, 2021, Virtual Event, USA O’Leary et al.

Factors in Computing Systems (CHI ’14). ACM, New York, NY, USA, 459–468.
https://doi.org/10.1145/2556288.2557338

[22] Jennifer Jacobs and Leah Buechley. 2013. Codeable Objects: Computational
Design and Digital Fabrication for Novice Programmers. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 1589–1598. https://doi.org/10.1145/2470654.2466211

[23] Juha Kuusama. 2021. LitePlacer | The Pick and Place Machine for Your Lab.
https://liteplacer.com/

[24] Jeeeun Kim, Clement Zheng, Haruki Takahashi, Mark D Gross, Daniel Ash-
brook, and Tom Yeh. 2018. Compositional 3D Printing: Expanding & Supporting
Workflows Towards Continuous Fabrication. In Proceedings of the 2Nd ACM
Symposium on Computational Fabrication (SCF ’18). ACM, New York, NY, USA,
5:1–5:10. https://doi.org/10.1145/3213512.3213518

[25] Jarrod Knibbe, Tovi Grossman, and George Fitzmaurice. 2015. Smart Makerspace:
An Immersive Instructional Space for Physical Tasks. In Proceedings of the 2015
International Conference on Interactive Tabletops & Surfaces (ITS ’15). ACM, New
York, NY, USA, 83–92. https://doi.org/10.1145/2817721.2817741

[26] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, 36:1–36:17. https://doi.org/10.1145/
3173574.3173610 event-place: Montreal QC, Canada.

[27] Danny Leen, Raf Ramakers, and Kris Luyten. 2017. StrutModeling: A Low-Fidelity
Construction Kit to Iteratively Model, Test, and Adapt 3D Objects. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology
(UIST ’17). ACM, New York, NY, USA, 471–479. https://doi.org/10.1145/
3126594.3126643

[28] Jiahao Li, Jeeeun Kim, and Xiang ’Anthony’ Chen. 2019. Robiot: A Design Tool
for Actuating Everyday Objects with Automatically Generated 3D Printable
Mechanisms. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’19). Association for Computing Machinery, New
Orleans, LA, USA, 673–685. https://doi.org/10.1145/3332165.3347894

[29] Wallace Lira, Chi-Wing Fu, and Hao Zhang. 2018. Fabricable Eulerian Wires
for 3D Shape Abstraction. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH
Asia ’18). ACM, New York, NY, USA, 240:1–240:13. https://doi.org/10.1145/
3272127.3275049

[30] Makeblock. 2019. mBlock. http://learn.makeblock.com/en/software/
[31] MakePrintable. 2021. MakePrintable: 3D Printing API. https://

makeprintable.com/
[32] Albert Manero, Peter Smith, Amanda Koontz, Matt Dombrowski, John Sparkman,

Dominique Courbin, and Albert Chi. 2020. Leveraging 3D Printing Capacity in
Times of Crisis: Recommendations for COVID-19 Distributed Manufacturing for
Medical Equipment Rapid Response. Int J Environ Res Public Health 17, 13 (July
2020). https://doi.org/10.3390/ijerph17134634

[33] M. T. Mason. 1981. Compliance and Force Control for Computer Controlled
Manipulators. IEEE Transactions on Systems, Man, and Cybernetics 11, 6 (June
1981), 418–432. https://doi.org/10.1109/TSMC.1981.4308708 Conference
Name: IEEE Transactions on Systems, Man, and Cybernetics.

[34] Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional Evaluation
with Direct Manipulation. Proc. ACM Program. Lang. 2, OOPSLA (Oct. 2018),
127:1–127:28. https://doi.org/10.1145/3276497

[35] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and J. Heer. 2019.
Formalizing Visualization Design Knowledge as Constraints: Actionable and
Extensible Models in Draco. IEEE Transactions on Visualization and Computer
Graphics 25, 1 (Jan. 2019), 438–448. https://doi.org/10.1109/TVCG.2018.
2865240 Conference Name: IEEE Transactions on Visualization and Computer
Graphics.

[36] Stefanie Mueller, Pedro Lopes, and Patrick Baudisch. 2012. Interactive Construc-
tion: Interactive Fabrication of Functional Mechanical Devices. In Proceedings
of the 25th Annual ACM Symposium on User Interface Software and Technology
(UIST ’12). ACM, New York, NY, USA, 599–606. https://doi.org/10.1145/
2380116.2380191 event-place: Cambridge, Massachusetts, USA.

[37] Chandrakana Nandi, James R. Wilcox, Pavel Panchekha, Taylor Blau, Dan Gross-
man, and Zachary Tatlock. 2018. Functional Programming for Compiling and
Decompiling Computer-aided Design. Proc. ACM Program. Lang. 2, ICFP (July
2018), 99:1–99:31. https://doi.org/10.1145/3236794

[38] Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva
Darulova, Dan Grossman, and Zachary Tatlock. 2020. Synthesizing structured
CAD models with equality saturation and inverse transformations. In Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery, New York,
NY, USA, 31–44. https://doi.org/10.1145/3385412.3386012

[39] Jasper O’Leary and Nadya Peek. 2018. Material Flow in Makerspaces. In Proceed-
ings of the 3rd International Symposium on Academic Makerspaces. ACM, Stanford,
CA, USA.

[40] Dan R. Olsen. 2007. Evaluating user interface systems research. In Proceedings
of the 20th annual ACM symposium on User interface software and technology
(UIST ’07). Association for Computing Machinery, New York, NY, USA, 251–258.

https://doi.org/10.1145/1294211.1294256
[41] Huaishu Peng, Rundong Wu, Steve Marschner, and François Guimbretière. 2016.

On-The-Fly Print: Incremental Printing While Modelling. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems (CHI ’16). ACM,
New York, NY, USA, 887–896. https://doi.org/10.1145/2858036.2858106

[42] Alexander Y. Piggott, Jan Petykiewicz, Logan Su, and Jelena Vučković. 2017.
Fabrication-constrained nanophotonic inverse design. Scientific Reports 7, 1 (May
2017), 1786. https://doi.org/10.1038/s41598-017-01939-2 Number: 1
Publisher: Nature Publishing Group.

[43] Josef Průša. 2012. Prusa3D Printer. https://www.prusa3d.com/
[44] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn

Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: programming for all. Commun. ACM
52, 11 (Nov. 2009), 60–67. https://doi.org/10.1145/1592761.1592779

[45] Rush D. Robinett (Ed.). 2002. Flexible robot dynamics and controls. Number 19
in IFSR international series on systems science and engineering. Kluwer Aca-
demic/Plenum Publishers, New York.

[46] Jessica Rosenkrantz and Jesse Louis-Rosenberg. 2018. Coral Cup. https://n-
e-r-v-o-u-s.com/blog/?p=8222

[47] ROS.org. 2019. Unified Robot Description Format - ROS Wiki. http://wiki.
ros.org/urdf

[48] Hidekazu Saegusa, Thomas Tran, and Daniela K. Rosner. 2016. Mimetic Machines:
Collaborative Interventions in Digital Fabrication with Arc. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 6008–6013. https://doi.org/10.1145/2858036.2858475

[49] Sarf2k4. 2021. Configuring Marlin. https://marlinfw.org/docs/
configuration/configuration.html

[50] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350. https://doi.
org/10.1109/TVCG.2016.2599030

[51] Arvind Satyanarayan, KanitWongsuphasawat, and JeffreyHeer. 2014. Declarative
interaction design for data visualization. In Proceedings of the 27th annual ACM
symposium on User interface software and technology (UIST ’14). Association for
Computing Machinery, New York, NY, USA, 669–678. https://doi.org/10.
1145/2642918.2647360

[52] Greg Saul, Tiago Rorke, Huaishu Peng, and Cheng Xu. 2013. Make Your Own
Piccolo. In Proceedings of the 7th International Conference on Tangible, Embedded
and Embodied Interaction (TEI ’13). ACM, New York, NY, USA, 439–442. https:
//doi.org/10.1145/2460625.2460723

[53] Eldon Schoop, Michelle Nguyen, Daniel Lim, Valkyrie Savage, Sean Follmer,
and Björn Hartmann. 2016. Drill Sergeant: Supporting Physical Construction
Projects Through an Ecosystem of Augmented Tools. In Proceedings of the 2016
CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI
EA ’16). ACM, New York, NY, USA, 1607–1614. https://doi.org/10.1145/
2851581.2892429

[54] Erik Seligman, E. Thomas Schubert, andM. V. Achutha Kiran Kumar. 2015. Formal
verification: an essential toolkit for modern VLSI design. Elsevier/MK, Morgan
Kaufmann is an imprint of Elsevier, Amsterdam ; Boston. OCLC: ocn920376471.

[55] Alexander Slocum. [n.d.]. FUNdaMENTALS of Design. http://pergatory.
mit.edu/resources/fundamentals.html

[56] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In Proceedings
of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XII). ACM, New York, NY, USA,
404–415. https://doi.org/10.1145/1168857.1168907 event-place: San Jose,
California, USA.

[57] Alexander Teibrich, Stefanie Mueller, François Guimbretière, Robert Kovacs, Ste-
fan Neubert, and Patrick Baudisch. 2015. Patching Physical Objects. In Proceed-
ings of the 28th Annual ACM Symposium on User Interface Software & Technology
(UIST ’15). Association for Computing Machinery, New York, NY, USA, 83–91.
https://doi.org/10.1145/2807442.2807467

[58] Rundong Tian, Vedant Saran, Mareike Kritzler, Florian Michahelles, and Eric
Paulos. 2019. Turn-by-Wire: Computationally Mediated Physical Fabrication. In
Proceedings of the 32Nd Annual ACM Symposium on User Interface Software and
Technology (UIST ’19). ACM, New York, NY, USA, 713–725. https://doi.org/
10.1145/3332165.3347918 event-place: New Orleans, LA, USA.

[59] Cesar Torres, Jasper O’Leary, Molly Nicholas, and Eric Paulos. 2017. Illumina-
tion Aesthetics: Light As a Creative Material Within Computational Design. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 6111–6122. https://doi.org/10.1145/
3025453.3025466

[60] Cesar Torres, Sarah Sterman, Molly Nicholas, Richard Lin, Eric Pai, and Eric
Paulos. 2018. Guardians of Practice: A Contextual Inquiry of Failure-Mitigation
Strategies within Creative Practices. In Proceedings of the 2018 Designing Interac-
tive Systems Conference (DIS ’18). Association for Computing Machinery, New
York, NY, USA, 1259–1267. https://doi.org/10.1145/3196709.3196795

https://doi.org/10.1145/2556288.2557338
https://doi.org/10.1145/2470654.2466211
https://liteplacer.com/
https://doi.org/10.1145/3213512.3213518
https://doi.org/10.1145/2817721.2817741
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3126594.3126643
https://doi.org/10.1145/3126594.3126643
https://doi.org/10.1145/3332165.3347894
https://doi.org/10.1145/3272127.3275049
https://doi.org/10.1145/3272127.3275049
http://learn.makeblock.com/en/software/
https://makeprintable.com/
https://makeprintable.com/
https://doi.org/10.3390/ijerph17134634
https://doi.org/10.1109/TSMC.1981.4308708
https://doi.org/10.1145/3276497
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1145/2380116.2380191
https://doi.org/10.1145/2380116.2380191
https://doi.org/10.1145/3236794
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/2858036.2858106
https://doi.org/10.1038/s41598-017-01939-2
https://www.prusa3d.com/
https://doi.org/10.1145/1592761.1592779
https://n-e-r-v-o-u-s.com/blog/?p=8222
https://n-e-r-v-o-u-s.com/blog/?p=8222
http://wiki.ros.org/urdf
http://wiki.ros.org/urdf
https://doi.org/10.1145/2858036.2858475
https://marlinfw.org/docs/configuration/configuration.html
https://marlinfw.org/docs/configuration/configuration.html
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2460625.2460723
https://doi.org/10.1145/2460625.2460723
https://doi.org/10.1145/2851581.2892429
https://doi.org/10.1145/2851581.2892429
http://pergatory.mit.edu/resources/fundamentals.html
http://pergatory.mit.edu/resources/fundamentals.html
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/2807442.2807467
https://doi.org/10.1145/3332165.3347918
https://doi.org/10.1145/3332165.3347918
https://doi.org/10.1145/3025453.3025466
https://doi.org/10.1145/3025453.3025466
https://doi.org/10.1145/3196709.3196795

Taxon UIST ’21, October 10–14, 2021, Virtual Event, USA

[61] Jasper Tran O’Leary and Nadya Peek. 2019. Machine-o-Matic: A Programming
Environment for Prototyping Digital Fabrication Workflows. In The Adjunct
Publication of the 32Nd Annual ACM Symposium on User Interface Software and
Technology (UIST ’19). ACM, New York, NY, USA, 134–136. https://doi.org/
10.1145/3332167.3356897 event-place: New Orleans, LA, USA.

[62] Ultimaker. 2021. Ultimaker/Cura Printer Definitions. https://github.com/
Ultimaker/Cura

[63] Priyan Vaithilingam and Philip J. Guo. 2019. Bespoke: Interactively Synthe-
sizing Custom GUIs from Command-Line Applications By Demonstration. In
Proceedings of the 32Nd Annual ACM Symposium on User Interface Software and
Technology (UIST ’19). ACM, New York, NY, USA, 563–576. https://doi.org/
10.1145/3332165.3347944 event-place: New Orleans, LA, USA.

[64] Joshua Vasquez, Hannah Twigg-Smith, Jasper Tran O’Leary, and Nadya Peek.
2020. Jubilee: An Extensible Machine for Multi-tool Fabrication. In Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). ACM,
New York, NY, USA.

[65] Vention. 2019. Vention. vention.io
[66] Guanyun Wang, Lining Yao, Wen Wang, Jifei Ou, Chin-Yi Cheng, and Hiroshi

Ishii. 2016. xPrint: A Modularized Liquid Printer for Smart Materials Deposition.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing Sys-
tems. ACM, San Jose California USA, 5743–5752. https://doi.org/10.1145/
2858036.2858281

[67] Wasp. 2019. Delta WASP 2040 Clay. https://www.3dwasp.com/en/clay-3d-
printer-delta-wasp-2040-clay/

[68] Karl D.D. Willis, Cheng Xu, Kuan-Ju Wu, Golan Levin, and Mark D. Gross. 2011.
Interactive Fabrication: New Interfaces for Digital Fabrication. In Proceedings of

the Fifth International Conference on Tangible, Embedded, and Embodied Interac-
tion (TEI ’11). ACM, New York, NY, USA, 69–72. https://doi.org/10.1145/
1935701.1935716

[69] Max Willsey, Ashley P. Stephenson, Chris Takahashi, Pranav Vaid, Bichlien H.
Nguyen, Michal Piszczek, Christine Betts, Sharon Newman, Sarang Joshi, Karin
Strauss, and Luis Ceze. 2019. Puddle: A Dynamic, Error-Correcting, Full-Stack Mi-
crofluidics Platform. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS ’19). Association for Computing Machinery, Providence, RI, USA, 183–197.
https://doi.org/10.1145/3297858.3304027

[70] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and J. Heer.
2016. Voyager: Exploratory Analysis via Faceted Browsing of Visualization
Recommendations. IEEE Transactions on Visualization and Computer Graphics
22, 1 (Jan. 2016), 649–658. https://doi.org/10.1109/TVCG.2015.2467191
Conference Name: IEEE Transactions on Visualization and Computer Graphics.

[71] Nur Yildirim, James McCann, and John Zimmerman. 2020. Digital Fabrication
Tools at Work: Probing Professionals’ Current Needs and Desired Futures. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376621

[72] Amy X. Zhang, Grant Hugh, and Michael S. Bernstein. 2020. PolicyKit: Building
Governance in Online Communities. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology (UIST ’20). Association for
Computing Machinery, New York, NY, USA, 365–378. https://doi.org/10.
1145/3379337.3415858

https://doi.org/10.1145/3332167.3356897
https://doi.org/10.1145/3332167.3356897
https://github.com/Ultimaker/Cura
https://github.com/Ultimaker/Cura
https://doi.org/10.1145/3332165.3347944
https://doi.org/10.1145/3332165.3347944
vention.io
https://doi.org/10.1145/2858036.2858281
https://doi.org/10.1145/2858036.2858281
https://www.3dwasp.com/en/clay-3d-printer-delta-wasp-2040-clay/
https://www.3dwasp.com/en/clay-3d-printer-delta-wasp-2040-clay/
https://doi.org/10.1145/1935701.1935716
https://doi.org/10.1145/1935701.1935716
https://doi.org/10.1145/3297858.3304027
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3313831.3376621
https://doi.org/10.1145/3379337.3415858
https://doi.org/10.1145/3379337.3415858

	Abstract
	1 Introduction
	2 Related Work
	2.1 Understanding and Building for Challenges in Fabrication
	2.2 Languages for Interactive Exploration
	2.3 Programmatic Representations of Digital-Physical Systems

	3 System Architecture
	4 Machine Plans: Blocks
	4.1 Block Syntax
	4.2 Connections

	5 Machine Plans: Metrics
	6 Workflow and Actions
	6.1 Machine Action Language Example
	6.2 Checking Machine Actions with Rules of Thumb

	7 Evaluation: Adding to the Language though Demonstration Programs
	7.1 Evaluation Method
	7.2 Comparing Off-the-Shelf 3D Printers
	7.3 Cutting a Styrofoam Airfoil with a Hot Wire Cutter
	7.4 Printing with Clay
	7.5 Bio-actuated Textiles
	7.6 Robotic Assembly of PCB Components

	8 Limitations
	9 Future Work: Affordances of Formal Representation
	10 Conclusion
	References

